Phi, primorials, and Poisson

IF 0.6 Q3 MATHEMATICS
P. Pollack, C. Pomerance
{"title":"Phi, primorials, and Poisson","authors":"P. Pollack, C. Pomerance","doi":"10.1215/00192082-8591576","DOIUrl":null,"url":null,"abstract":"The primorial $p\\#$ of a prime $p$ is the product of all primes $q\\le p$. Let pr$(n)$ denote the largest prime $p$ with $p\\# \\mid \\phi(n)$, where $\\phi$ is Euler's totient function. We show that the normal order of pr$(n)$ is $\\log\\log n/\\log\\log\\log n$. That is, pr$(n) \\sim \\log\\log n/\\log\\log\\log n$ as $n\\to\\infty$ on a set of integers of asymptotic density 1. In fact we show there is an asymptotic secondary term and, on a tertiary level, there is an asymptotic Poisson distribution. We also show an analogous result for the largest integer $k$ with $k!\\mid \\phi(n)$.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-8591576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The primorial $p\#$ of a prime $p$ is the product of all primes $q\le p$. Let pr$(n)$ denote the largest prime $p$ with $p\# \mid \phi(n)$, where $\phi$ is Euler's totient function. We show that the normal order of pr$(n)$ is $\log\log n/\log\log\log n$. That is, pr$(n) \sim \log\log n/\log\log\log n$ as $n\to\infty$ on a set of integers of asymptotic density 1. In fact we show there is an asymptotic secondary term and, on a tertiary level, there is an asymptotic Poisson distribution. We also show an analogous result for the largest integer $k$ with $k!\mid \phi(n)$.
,原始函数和泊松函数
质数$p$的质数$p\#$是所有质数$q\le p$的乘积。设pr $(n)$用$p\# \mid \phi(n)$表示最大的素数$p$,其中$\phi$为欧拉全等函数。我们证明了pr $(n)$的正常阶为$\log\log n/\log\log\log n$。也就是说,pr $(n) \sim \log\log n/\log\log\log n$在密度为1的整数集合上等于$n\to\infty$。事实上,我们证明了有一个渐近的次级项,在一个三级上,有一个渐近的泊松分布。我们还用$k!\mid \phi(n)$展示了最大整数$k$的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信