{"title":"Bayesian Inference of Triple Seasonal Autoregressive Models","authors":"A. Amin","doi":"10.18187/pjsor.v18i4.3869","DOIUrl":null,"url":null,"abstract":"In this paper we extend autoregressive models to fit time series that have three layers of seasonality, i.e. triple seasonal autoregressive (TSAR) models, and we introduce the Bayesian inference for these TSAR models. Assuming the TSAR model errors are normally distributed and employing three priors, i.e. Jeffreys', g, and normal-gamma priors, on the model parameters, we derive the marginal posterior distributions of the TSAR model parameters. In particular, we show that the marginal posterior distributions to be multivariate t and gamma distributions for the model coefficients and precision, respectively. We evaluate the efficiency of the proposed Bayesian inference using simulation study, and we then apply it to real-world hourly electricity load time series datasets in six European countries.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Statistics and Operation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v18i4.3869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper we extend autoregressive models to fit time series that have three layers of seasonality, i.e. triple seasonal autoregressive (TSAR) models, and we introduce the Bayesian inference for these TSAR models. Assuming the TSAR model errors are normally distributed and employing three priors, i.e. Jeffreys', g, and normal-gamma priors, on the model parameters, we derive the marginal posterior distributions of the TSAR model parameters. In particular, we show that the marginal posterior distributions to be multivariate t and gamma distributions for the model coefficients and precision, respectively. We evaluate the efficiency of the proposed Bayesian inference using simulation study, and we then apply it to real-world hourly electricity load time series datasets in six European countries.
期刊介绍:
Pakistan Journal of Statistics and Operation Research. PJSOR is a peer-reviewed journal, published four times a year. PJSOR publishes refereed research articles and studies that describe the latest research and developments in the area of statistics, operation research and actuarial statistics.