On a semitopological semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ when a family $\mathscr{F}$ consists of inductive non-empty subsets of $\omega$

Q3 Mathematics
O. Gutik, M. Mykhalenych
{"title":"On a semitopological semigroup $\\boldsymbol{B}_{\\omega}^{\\mathscr{F}}$ when a family $\\mathscr{F}$ consists of inductive non-empty subsets of $\\omega$","authors":"O. Gutik, M. Mykhalenych","doi":"10.30970/ms.59.1.20-28","DOIUrl":null,"url":null,"abstract":"Let $\\boldsymbol{B}_{\\omega}^{\\mathscr{F}}$ be the bicyclic semigroup extension for the family $\\mathscr{F}$ of ${\\omega}$-closed subsets of $\\omega$ which is introduced in \\cite{Gutik-Mykhalenych=2020}.We study topologizations of the semigroup $\\boldsymbol{B}_{\\omega}^{\\mathscr{F}}$ for the family $\\mathscr{F}$ of inductive ${\\omega}$-closed subsets of $\\omega$. We generalize Eberhart-Selden and Bertman-West results about topologizations of the bicyclic semigroup \\cite{Bertman-West-1976, Eberhart-Selden=1969} and show that every Hausdorff shift-continuous topology on the semigroup $\\boldsymbol{B}_{\\omega}^{\\mathscr{F}}$ is discrete and if a Hausdorff semitopological semigroup $S$ contains $\\boldsymbol{B}_{\\omega}^{\\mathscr{F}}$ as a proper dense subsemigroup then $S\\setminus\\boldsymbol{B}_{\\omega}^{\\mathscr{F}}$ is an ideal of $S$. Also, we prove the following dichotomy: every Hausdorff locally compact shift-continuous topology on $\\boldsymbol{B}_{\\omega}^{\\mathscr{F}}$ with an adjoined zero is either compact or discrete. As a consequence of the last result we obtain that every Hausdorff locally compact semigroup topology on $\\boldsymbol{B}_{\\omega}^{\\mathscr{F}}$ with an adjoined zero is discrete and every Hausdorff locally compact shift-continuous topology on the semigroup $\\boldsymbol{B}_{\\omega}^{\\mathscr{F}}\\sqcup I$ with an adjoined compact ideal $I$ is either compact or the ideal $I$ is open, which extent many results about locally compact topologizations of some classes of semigroups onto extensions of the semigroup $\\boldsymbol{B}_{\\omega}^{\\mathscr{F}}$.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.59.1.20-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ be the bicyclic semigroup extension for the family $\mathscr{F}$ of ${\omega}$-closed subsets of $\omega$ which is introduced in \cite{Gutik-Mykhalenych=2020}.We study topologizations of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ for the family $\mathscr{F}$ of inductive ${\omega}$-closed subsets of $\omega$. We generalize Eberhart-Selden and Bertman-West results about topologizations of the bicyclic semigroup \cite{Bertman-West-1976, Eberhart-Selden=1969} and show that every Hausdorff shift-continuous topology on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is discrete and if a Hausdorff semitopological semigroup $S$ contains $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ as a proper dense subsemigroup then $S\setminus\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is an ideal of $S$. Also, we prove the following dichotomy: every Hausdorff locally compact shift-continuous topology on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with an adjoined zero is either compact or discrete. As a consequence of the last result we obtain that every Hausdorff locally compact semigroup topology on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with an adjoined zero is discrete and every Hausdorff locally compact shift-continuous topology on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}\sqcup I$ with an adjoined compact ideal $I$ is either compact or the ideal $I$ is open, which extent many results about locally compact topologizations of some classes of semigroups onto extensions of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$.
关于半拓扑半群$\boldsymbol{B}_{\omega}^{\mathscr{F}}$当一个族$\mathscr{F}$由$\omega的归纳非空子集组成时$
让 $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ 是族的双环半群的推广 $\mathscr{F}$ 的 ${\omega}$的闭子集 $\omega$ 这是在 \cite{Gutik-Mykhalenych=2020}我们研究半群的拓扑结构 $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ 为了家庭 $\mathscr{F}$ 归纳的 ${\omega}$的闭子集 $\omega$。推广了双环半群拓扑化的Eberhart-Selden和Bertman-West结果 \cite{Bertman-West-1976, Eberhart-Selden=1969} 并证明了半群上的每一个Hausdorff位移连续拓扑 $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ 是离散的,如果一个Hausdorff半拓扑半群 $S$ 包含 $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ 作为真密子半群 $S\setminus\boldsymbol{B}_{\omega}^{\mathscr{F}}$ 是一个理想的 $S$。此外,我们还证明了以下二分法:上的每一个Hausdorff局部紧移-连续拓扑 $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ 带邻接零的是紧的或离散的。由上一个结果,我们得到了上的每一个Hausdorff局部紧半群拓扑 $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ 具有伴零的半群是离散的,并且半群上的每一个Hausdorff局部紧移连续拓扑 $\boldsymbol{B}_{\omega}^{\mathscr{F}}\sqcup I$ 具有相邻紧致理想的 $I$ 是紧凑的还是理想的 $I$ 关于某些半群的局部紧拓扑的许多结果在半群的扩展上是开的 $\boldsymbol{B}_{\omega}^{\mathscr{F}}$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信