Evert Dhaene, P. Smet, Klaartje De Buysser, J. De Roo
{"title":"Mono-alkyl Phosphinic Acids as Ligands in Nanocrystal Synthesis","authors":"Evert Dhaene, P. Smet, Klaartje De Buysser, J. De Roo","doi":"10.33774/chemrxiv-2021-0hw9k","DOIUrl":null,"url":null,"abstract":"Surfactants play a crucial role in the synthesis of colloidal nanocrystals. Nevertheless, only a handful molecules are currently used, oleic acid being the most typical example. Here, we show that mono-alkyl phosphinic acids are an interesting surfactant class with a reactivity that is intermediate between carboxylic acids and phosphonic acids. We first present the synthesis of n-hexyl, 2-ethylhexyl, n-tetradecyl, n-octadecyl, and oleyl phosphinic acid. These compounds are suitable surfactants during high-temperature nanocrystal synthesis (240-300°C). In contrast to phosphonic acids, they do not form poly anhydride gels. Consequently, CdSe quantum dots synthesized with octadecylphosphinic acid are conveniently purified, and are free from background scattering in UV-Vis. The CdSe nanocrystals have a very low polydispersity and a photoluminescence quantum yield up to 18%, without additional shell. Furthermore, we could synthesize CdSe and CdS nanorods using phosphinic acid ligands and found a remarkable purity (i.e. without tetrapod impurities). We conclude that the reactivity towards TOP-S and TOP-Se precursors decreases in the series: cadmium carboxylate > cadmium phosphinate > cadmium phosphonate. By introducing a third and intermediate class of surfactants, we enhance the versatility of surfactant-assisted syntheses.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-0hw9k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Surfactants play a crucial role in the synthesis of colloidal nanocrystals. Nevertheless, only a handful molecules are currently used, oleic acid being the most typical example. Here, we show that mono-alkyl phosphinic acids are an interesting surfactant class with a reactivity that is intermediate between carboxylic acids and phosphonic acids. We first present the synthesis of n-hexyl, 2-ethylhexyl, n-tetradecyl, n-octadecyl, and oleyl phosphinic acid. These compounds are suitable surfactants during high-temperature nanocrystal synthesis (240-300°C). In contrast to phosphonic acids, they do not form poly anhydride gels. Consequently, CdSe quantum dots synthesized with octadecylphosphinic acid are conveniently purified, and are free from background scattering in UV-Vis. The CdSe nanocrystals have a very low polydispersity and a photoluminescence quantum yield up to 18%, without additional shell. Furthermore, we could synthesize CdSe and CdS nanorods using phosphinic acid ligands and found a remarkable purity (i.e. without tetrapod impurities). We conclude that the reactivity towards TOP-S and TOP-Se precursors decreases in the series: cadmium carboxylate > cadmium phosphinate > cadmium phosphonate. By introducing a third and intermediate class of surfactants, we enhance the versatility of surfactant-assisted syntheses.