A. K. Thawait, L. Sondhi, S. Sanyal, Shubhankar Bhowmick
{"title":"Stress and Deformation Analysis of Clamped Functionally graded Rotating Disks with Variable Thickness","authors":"A. K. Thawait, L. Sondhi, S. Sanyal, Shubhankar Bhowmick","doi":"10.2478/mme-2019-0027","DOIUrl":null,"url":null,"abstract":"Abstract The present study reports the linear elastic analysis of variable thickness functionally graded rotating disks. Disk material is graded radially by varying the volume fraction ratios of the constituent components. Three types of distribution laws, namely power law, exponential law and Mori–Tanaka scheme are considered on a concave thickness profile rotating disk, and the resulting deformation and stresses are evaluated for clamped-free boundary condition. The investigation is carried out using element based grading of material properties on the discretized elements. The effect of grading on deformation and stresses is investigated for each type of material distribution law. Further, a comparison is made between different types of distributions. The results obtained show that in a rotating disk, the deformation and stress fields can be controlled by the distribution law and grading parameter n of the volume fraction ratio.","PeriodicalId":53557,"journal":{"name":"Mechanics and Mechanical Engineering","volume":"23 1","pages":"202 - 211"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mme-2019-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract The present study reports the linear elastic analysis of variable thickness functionally graded rotating disks. Disk material is graded radially by varying the volume fraction ratios of the constituent components. Three types of distribution laws, namely power law, exponential law and Mori–Tanaka scheme are considered on a concave thickness profile rotating disk, and the resulting deformation and stresses are evaluated for clamped-free boundary condition. The investigation is carried out using element based grading of material properties on the discretized elements. The effect of grading on deformation and stresses is investigated for each type of material distribution law. Further, a comparison is made between different types of distributions. The results obtained show that in a rotating disk, the deformation and stress fields can be controlled by the distribution law and grading parameter n of the volume fraction ratio.