{"title":"Limestone replacements by fine crushed concrete and ceramic wastes during the production of Portland cement","authors":"J. Assaad, A. Mardani","doi":"10.1080/21650373.2023.2225189","DOIUrl":null,"url":null,"abstract":"Abstract This study assesses the feasibility of limestone (LS) replacement by recycled fine aggregates (RFAs) on grindability and Portland cement properties. Two RFA types generated from the fine fraction of crushed concrete and ceramic wastes are ground in 22-liters grinding mill at 310 and 400 ± 20 m2/kg Blaine fineness, and then incorporated at 20% and 35% rates in clinker cement mixtures. Because of their porous nature, RFAs required about 22% to 30% less communition energy than LS, which could be advantageous to reduce grinding costs for given Blaine fineness. Mortars prepared with RFA-based cements yielded better strength recovery over time and lower water sorptivity than LS-based cement, either due to promoted hydraulic activity or pozzolanic reactions. The comminution of RFA fillers to 400 ± 20 m2/kg fineness is a viable alternative to mitigate the dilution effect while maintaining similar grinding energy and mechanical strengths as the control 95% clinker cement.","PeriodicalId":48521,"journal":{"name":"Journal of Sustainable Cement-Based Materials","volume":"12 1","pages":"1447 - 1459"},"PeriodicalIF":4.7000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Cement-Based Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21650373.2023.2225189","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract This study assesses the feasibility of limestone (LS) replacement by recycled fine aggregates (RFAs) on grindability and Portland cement properties. Two RFA types generated from the fine fraction of crushed concrete and ceramic wastes are ground in 22-liters grinding mill at 310 and 400 ± 20 m2/kg Blaine fineness, and then incorporated at 20% and 35% rates in clinker cement mixtures. Because of their porous nature, RFAs required about 22% to 30% less communition energy than LS, which could be advantageous to reduce grinding costs for given Blaine fineness. Mortars prepared with RFA-based cements yielded better strength recovery over time and lower water sorptivity than LS-based cement, either due to promoted hydraulic activity or pozzolanic reactions. The comminution of RFA fillers to 400 ± 20 m2/kg fineness is a viable alternative to mitigate the dilution effect while maintaining similar grinding energy and mechanical strengths as the control 95% clinker cement.
期刊介绍:
The Journal of Sustainable Cement-Based Materials aims to publish theoretical and applied researches on materials, products and structures that incorporate cement. The journal is a forum for discussion of research on manufacture, hydration and performance of cement-based materials; novel experimental techniques; the latest analytical and modelling methods; the examination and the diagnosis of real cement and concrete structures; and the potential for improved cement-based materials. The journal welcomes original research papers, major reviews, rapid communications and selected conference papers. The Journal of Sustainable Cement-Based Materials covers a wide range of topics within its subject category, including but are not limited to: • raw materials and manufacture of cement • mixing, rheology and hydration • admixtures • structural characteristics and performance of cement-based materials • characterisation techniques and modeling • use of fibre in cement based-materials • degradation and repair of cement-based materials • novel testing techniques and applications • waste management