{"title":"Numerical study on the cavitation noise of marine skew propellers","authors":"Agung Purwana, I. Ariana, W. Wardhana","doi":"10.3329/jname.v18i2.38099","DOIUrl":null,"url":null,"abstract":"In this study, numerical simulations on the noise of the underwater marine propeller for different pressures, skew angles, and performance conditions are investigated. The study has been carried out for the prediction of cavity and noise cavitation characteristics of the propeller. The blade sheet cavitation created by an underwater propeller is then evaluated using numerical analysis. The cavitation and cavity around marine propellers were predicted using MRF (Multiple Reference Frame) techniques. The simulation uses the Reynolds Averaged Navier-Stokes (RANS) formulation with the turbulence model k-ω Shear Stress Transport and the Fast Fourier Transform. The FW-H equation is used to measure far-field radiation under various operating conditions. The simulation is carried out to present that the pressure and skew propeller angles have an effect on the form and area of the cavity, as well as cavitation noise. The noise characteristics at various positions of hydrophones and speeds of the marine propeller are presented. The 3D model of B-series marine propeller with D=250 mm, Z=4, P/D= 1.0, AE/AO=0.55, skew angles of 16, 35, 53, and 72 degrees at advance coefficient, J=0.221, is used for the simulation","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.38099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 3
Abstract
In this study, numerical simulations on the noise of the underwater marine propeller for different pressures, skew angles, and performance conditions are investigated. The study has been carried out for the prediction of cavity and noise cavitation characteristics of the propeller. The blade sheet cavitation created by an underwater propeller is then evaluated using numerical analysis. The cavitation and cavity around marine propellers were predicted using MRF (Multiple Reference Frame) techniques. The simulation uses the Reynolds Averaged Navier-Stokes (RANS) formulation with the turbulence model k-ω Shear Stress Transport and the Fast Fourier Transform. The FW-H equation is used to measure far-field radiation under various operating conditions. The simulation is carried out to present that the pressure and skew propeller angles have an effect on the form and area of the cavity, as well as cavitation noise. The noise characteristics at various positions of hydrophones and speeds of the marine propeller are presented. The 3D model of B-series marine propeller with D=250 mm, Z=4, P/D= 1.0, AE/AO=0.55, skew angles of 16, 35, 53, and 72 degrees at advance coefficient, J=0.221, is used for the simulation
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.