Numerical study on the cavitation noise of marine skew propellers

IF 1.2 Q3 ENGINEERING, MARINE
Agung Purwana, I. Ariana, W. Wardhana
{"title":"Numerical study on the cavitation noise of marine skew propellers","authors":"Agung Purwana, I. Ariana, W. Wardhana","doi":"10.3329/jname.v18i2.38099","DOIUrl":null,"url":null,"abstract":"In this study, numerical simulations on the noise of the underwater marine propeller for different pressures, skew angles, and performance conditions are investigated. The study has been carried out for the prediction of cavity and noise cavitation characteristics of the propeller. The blade sheet cavitation created by an underwater propeller is then evaluated using numerical analysis. The cavitation and cavity around marine propellers were predicted using MRF (Multiple Reference Frame) techniques. The simulation uses the Reynolds Averaged Navier-Stokes (RANS) formulation with the turbulence model k-ω Shear Stress Transport and the Fast Fourier Transform. The FW-H equation is used to measure far-field radiation under various operating conditions. The simulation is carried out to present that the pressure and skew propeller angles have an effect on the form and area of the cavity, as well as cavitation noise. The noise characteristics at various positions of hydrophones and speeds of the marine propeller are presented. The 3D model of B-series marine propeller with D=250 mm, Z=4, P/D= 1.0, AE/AO=0.55, skew angles of 16, 35, 53, and 72 degrees at advance coefficient, J=0.221, is used for the simulation","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.38099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, numerical simulations on the noise of the underwater marine propeller for different pressures, skew angles, and performance conditions are investigated. The study has been carried out for the prediction of cavity and noise cavitation characteristics of the propeller. The blade sheet cavitation created by an underwater propeller is then evaluated using numerical analysis. The cavitation and cavity around marine propellers were predicted using MRF (Multiple Reference Frame) techniques. The simulation uses the Reynolds Averaged Navier-Stokes (RANS) formulation with the turbulence model k-ω Shear Stress Transport and the Fast Fourier Transform. The FW-H equation is used to measure far-field radiation under various operating conditions. The simulation is carried out to present that the pressure and skew propeller angles have an effect on the form and area of the cavity, as well as cavitation noise. The noise characteristics at various positions of hydrophones and speeds of the marine propeller are presented. The 3D model of B-series marine propeller with D=250 mm, Z=4, P/D= 1.0, AE/AO=0.55, skew angles of 16, 35, 53, and 72 degrees at advance coefficient, J=0.221, is used for the simulation
船用斜螺旋桨空化噪声的数值研究
在本研究中,对不同压力、斜角和性能条件下水下螺旋桨的噪声进行了数值模拟。对螺旋桨空腔和噪声空化特性进行了预测研究。然后使用数值分析来评估水下螺旋桨产生的叶片空化。利用MRF(Multiple Reference Frame,多参考系)技术对船舶螺旋桨周围的空化和空腔进行了预测。模拟使用雷诺平均纳维-斯托克斯(RANS)公式和湍流模型k-ω剪切应力输运和快速傅立叶变换。FW-H方程用于测量各种操作条件下的远场辐射。仿真表明,压力和斜桨角对空腔的形状和面积以及空化噪声都有影响。介绍了水听器在不同位置和船用螺旋桨转速下的噪声特性。采用D=250mm、Z=4、P/D=1.0、AE/AO=0.55、斜交角分别为16、35、53和72度的B系列船用螺旋桨三维模型,在推进系数J=0.221下进行仿真
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
5.60%
发文量
0
审稿时长
20 weeks
期刊介绍: TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信