Straight-Parallel Electrodes and Variable Gap for Hydrogen and Oxygen Evolution Reactions

IF 2.3 Q3 ELECTROCHEMISTRY
M. J. Lavorante, Carla Yanina Reynoso, J. Franco
{"title":"Straight-Parallel Electrodes and Variable Gap for Hydrogen and Oxygen Evolution Reactions","authors":"M. J. Lavorante, Carla Yanina Reynoso, J. Franco","doi":"10.1155/2019/5392452","DOIUrl":null,"url":null,"abstract":"The challenges to be overtaken with alkaline water electrolysis are the reduction of energy consumption, the maintenance, and the cost as well as the increase of durability, reliability, and safety. Having these challenges in mind, this work focused on the reduction of the electrical resistance of the electrolyte which directly affects energy consumption. According to the definition of electrical resistance of an object, the reduction of the space between electrodes could lower the electrical resistance but, in this process, the formation of bubbles could modify this affirmation. In this work, the performance analyses of nine different spaces between stainless steel 316L electrodes were carried out, although the spaces proposed are not the same as those from the positive electrode (anode) to the separator and from the separator to the negative electrode (cathode). The reason why this is studied is that stoichiometry of the reaction states that two moles of hydrogen and one mole of oxygen can be obtained per every two moles of water. The proposed spaces were 10.65, 9.20, 8.25, 7.25, 6.30, 6.05, 4.35, 4.15, and 3.40 millimetres. From the nine different analysed distances between electrodes, it can be said that the best performance was reached by one of the smallest distances proposed, 4.15 mm. When the same distance between electrodes was compared (the same and different distance between electrodes and separator), the one that had almost twice the distance (negative compartment) presented an increase in current density of approximately 33% with respect to that where both distances (from electrodes to separator) are the same. That indicates that the stichometry of the electrolysis reaction influenced the performance.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/5392452","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/5392452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 3

Abstract

The challenges to be overtaken with alkaline water electrolysis are the reduction of energy consumption, the maintenance, and the cost as well as the increase of durability, reliability, and safety. Having these challenges in mind, this work focused on the reduction of the electrical resistance of the electrolyte which directly affects energy consumption. According to the definition of electrical resistance of an object, the reduction of the space between electrodes could lower the electrical resistance but, in this process, the formation of bubbles could modify this affirmation. In this work, the performance analyses of nine different spaces between stainless steel 316L electrodes were carried out, although the spaces proposed are not the same as those from the positive electrode (anode) to the separator and from the separator to the negative electrode (cathode). The reason why this is studied is that stoichiometry of the reaction states that two moles of hydrogen and one mole of oxygen can be obtained per every two moles of water. The proposed spaces were 10.65, 9.20, 8.25, 7.25, 6.30, 6.05, 4.35, 4.15, and 3.40 millimetres. From the nine different analysed distances between electrodes, it can be said that the best performance was reached by one of the smallest distances proposed, 4.15 mm. When the same distance between electrodes was compared (the same and different distance between electrodes and separator), the one that had almost twice the distance (negative compartment) presented an increase in current density of approximately 33% with respect to that where both distances (from electrodes to separator) are the same. That indicates that the stichometry of the electrolysis reaction influenced the performance.
氢析氧反应的直平行电极和可变间隙
碱水电解需要克服的挑战是降低能耗、维护和成本以及提高耐久性、可靠性和安全性。考虑到这些挑战,这项工作的重点是降低直接影响能量消耗的电解质的电阻。根据物体电阻的定义,电极间距的减小可以降低电阻,但在此过程中,气泡的形成会改变这一定义。在这项工作中,对不锈钢316L电极之间的9个不同空间进行了性能分析,尽管所提出的空间与正极(阳极)到分离器和分离器到负极(阴极)的空间不同。研究这个的原因是化学计量学表明每2摩尔的水可以得到2摩尔的氢和1摩尔的氧。建议的空间分别为10.65、9.20、8.25、7.25、6.30、6.05、4.35、4.15和3.40毫米。从所分析的9个不同的电极之间的距离来看,我们可以说,其中一个最小的距离(4.15 mm)达到了最佳性能。当电极之间的距离相同(电极与分离器之间的距离相同和不同)时,与两种距离(从电极到分离器)相同的距离相比,具有几乎两倍距离的电极(负隔室)呈现出约33%的电流密度增加。说明电解反应的配比对电解性能有一定的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
2
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信