Unlocking approximation for in-memory computing with Cartesian genetic programming and computer algebra for arithmetic circuits

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Saman Froehlich, R. Drechsler
{"title":"Unlocking approximation for in-memory computing with Cartesian genetic programming and computer algebra for arithmetic circuits","authors":"Saman Froehlich, R. Drechsler","doi":"10.1515/itit-2021-0042","DOIUrl":null,"url":null,"abstract":"Abstract With ReRAM being a non-volative memory technology, which features low power consumption, high scalability and allows for in-memory computing, it is a promising candidate for future computer architectures. Approximate computing is a design paradigm, which aims at reducing the complexity of hardware by trading off accuracy for area and/or delay. In this article, we introduce approximate computing techniques to in-memory computing. We extend existing compilation techniques for the Programmable Logic in-Memory (PLiM) computer architecture, by adapting state-of-the-art approximate computing techniques for arithmetic circuits. We use Cartesian Genetic Programming for the generation of approximate circuits and evaluate them using a Symbolic Computer Algebra-based technique with respect to error-metrics. In our experiments, we show that we can outperform state-of-the-art handcrafted approximate adder designs.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2021-0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract With ReRAM being a non-volative memory technology, which features low power consumption, high scalability and allows for in-memory computing, it is a promising candidate for future computer architectures. Approximate computing is a design paradigm, which aims at reducing the complexity of hardware by trading off accuracy for area and/or delay. In this article, we introduce approximate computing techniques to in-memory computing. We extend existing compilation techniques for the Programmable Logic in-Memory (PLiM) computer architecture, by adapting state-of-the-art approximate computing techniques for arithmetic circuits. We use Cartesian Genetic Programming for the generation of approximate circuits and evaluate them using a Symbolic Computer Algebra-based technique with respect to error-metrics. In our experiments, we show that we can outperform state-of-the-art handcrafted approximate adder designs.
用笛卡尔遗传规划和计算电路的计算机代数解锁内存计算中的近似
ReRAM作为一种非挥发性存储技术,具有低功耗、高可扩展性和允许内存内计算的特点,是未来计算机体系结构的一个很有前途的候选者。近似计算是一种设计范例,其目的是通过权衡精度和/或延迟来降低硬件的复杂性。在本文中,我们将介绍内存中计算的近似计算技术。我们扩展现有的编译技术的可编程逻辑在内存(PLiM)计算机体系结构,通过采用最先进的近似计算技术的算术电路。我们使用笛卡尔遗传规划来生成近似电路,并使用基于符号计算机代数的技术对误差度量进行评估。在我们的实验中,我们证明我们可以胜过最先进的手工制作的近似加法器设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信