On the Existence and Stability of Bounded Solutions for Abstract Dynamic Equations on Time Scales

IF 1.4 Q2 MATHEMATICS, APPLIED
C. Duque, H. Leiva, R. Gallo, A. Tridane
{"title":"On the Existence and Stability of Bounded Solutions for Abstract Dynamic Equations on Time Scales","authors":"C. Duque, H. Leiva, R. Gallo, A. Tridane","doi":"10.1155/2023/8489196","DOIUrl":null,"url":null,"abstract":"In this article we study the existence and stability of bounded solutions for semilinear abstract dynamic equations on time scales in Banach spaces. In order to do so, we use the definition of the Riemann delta-integral to prove a result about closed operator in Banach spaces and then we just use the representation of bounded solutions as an improper delta-integral from minus infinite to \n \n t\n \n . We prove the existence, uniqueness, and exponential stability of such bounded solutions. As particular cases, we study the existence of periodic and almost periodic solutions as well. Finally, we present some equations on time scales where our results can be applied.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8489196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we study the existence and stability of bounded solutions for semilinear abstract dynamic equations on time scales in Banach spaces. In order to do so, we use the definition of the Riemann delta-integral to prove a result about closed operator in Banach spaces and then we just use the representation of bounded solutions as an improper delta-integral from minus infinite to t . We prove the existence, uniqueness, and exponential stability of such bounded solutions. As particular cases, we study the existence of periodic and almost periodic solutions as well. Finally, we present some equations on time scales where our results can be applied.
时间尺度上抽象动力方程有界解的存在性与稳定性
本文研究了Banach空间上半线性抽象动力方程有界解的存在性和稳定性。为此,我们利用黎曼积分的定义来证明巴拿赫空间中闭算子的一个结果,然后将有界解表示为从负无穷到t的反常积分。证明了这类有界解的存在性、唯一性和指数稳定性。作为特殊情况,我们也研究了周期解和概周期解的存在性。最后,我们给出了一些可以应用我们的结果的时间尺度方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信