Acoustic Ray-Trace Correction for UUVs Cooperative Localization in Deep Ocean Applications

IF 2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Zhenqiang Du, Hongzhou Chai, Zeyu Li, Minzhi Xiang, Fan Zhang, Jun Hui
{"title":"Acoustic Ray-Trace Correction for UUVs Cooperative Localization in Deep Ocean Applications","authors":"Zhenqiang Du, Hongzhou Chai, Zeyu Li, Minzhi Xiang, Fan Zhang, Jun Hui","doi":"10.1080/01490419.2022.2059601","DOIUrl":null,"url":null,"abstract":"Abstract Precise position of Unmanned Underwater Vehicles (UUVs) plays a decisive role in optimal formation control, reasonable path planning, and efficient cooperative operation. However, the traditional method has the deficiency of low ranging accuracy and contains systematic deviation in the deep ocean applications, which seriously affects the accuracy of UUVs position and makes the goal of UUVs optimal configuration no longer applicable. A novel acoustic ray-trace correction method is proposed for UUVs cooperative localization in deep ocean applications. Considering the bending of underwater sound ray and the variation of sound velocity, the model of UUVs cooperative localization based on ray-trace correction is established. Two master UUVs in shallow ocean and one slave UUV in deep ocean under five configurations are simulated. The experimental results show that the average position bias of UUVs cooperative localization under the five configurations are reduced by 57.97%, 62.29%, 68.51%, 74.93% and 82.54%, respectively, which can expand the application scenarios of UUV. Furthermore, the proposed method can overcome the drawback of systematic deviation in the traditional method, so as to be consistent with the goal of UUVs optimal configuration.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2022.2059601","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Precise position of Unmanned Underwater Vehicles (UUVs) plays a decisive role in optimal formation control, reasonable path planning, and efficient cooperative operation. However, the traditional method has the deficiency of low ranging accuracy and contains systematic deviation in the deep ocean applications, which seriously affects the accuracy of UUVs position and makes the goal of UUVs optimal configuration no longer applicable. A novel acoustic ray-trace correction method is proposed for UUVs cooperative localization in deep ocean applications. Considering the bending of underwater sound ray and the variation of sound velocity, the model of UUVs cooperative localization based on ray-trace correction is established. Two master UUVs in shallow ocean and one slave UUV in deep ocean under five configurations are simulated. The experimental results show that the average position bias of UUVs cooperative localization under the five configurations are reduced by 57.97%, 62.29%, 68.51%, 74.93% and 82.54%, respectively, which can expand the application scenarios of UUV. Furthermore, the proposed method can overcome the drawback of systematic deviation in the traditional method, so as to be consistent with the goal of UUVs optimal configuration.
深海无人潜航器协同定位的声线轨迹校正
摘要无人潜航器的精确定位对最优编队控制、合理的路径规划和高效的协同作战起着决定性的作用。然而,在深海应用中,传统方法存在测距精度低的缺陷,并且存在系统偏差,严重影响了无人潜航器定位精度,使无人潜航机优化配置的目标不再适用。针对深海无人潜航器协同定位问题,提出了一种新的声线轨迹校正方法。考虑到水下声线的弯曲和声速的变化,建立了基于声线轨迹校正的无人潜航器协同定位模型。模拟了五种配置下的两个浅海主UUV和一个深海从UUV。实验结果表明,在五种配置下,无人潜航器协同定位的平均位置偏差分别降低了57.97%、62.29%、68.51%、74.93%和82.54%,可以扩展无人潜航机的应用场景。此外,该方法可以克服传统方法中系统偏差的缺点,从而符合无人潜水器优化配置的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Geodesy
Marine Geodesy 地学-地球化学与地球物理
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment. The journal will consider articles on the following topics: topography and mapping; satellite altimetry; bathymetry; positioning; precise navigation; boundary demarcation and determination; tsunamis; plate/tectonics; geoid determination; hydrographic and oceanographic observations; acoustics and space instrumentation; ground truth; system calibration and validation; geographic information systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信