Sidra Ghafoor, A. Mansha, S. Asim, M. Usman, A. F. Zahoor, H. S. Ali
{"title":"The structural, spectral, frontier molecular orbital and thermodynamic analysis of 2-hydroxy 2-methyl propiophenone by MP2 and B3LYP methods","authors":"Sidra Ghafoor, A. Mansha, S. Asim, M. Usman, A. F. Zahoor, H. S. Ali","doi":"10.1142/s0219633620500200","DOIUrl":null,"url":null,"abstract":"In the present work, we have studied the 2-hydroxy 2-methyl propiophenone (2H2MPP) theoretically as well as experimentally. The optimized molecular structure has been obtained by the density functional theory (DFT), second-order Moller–Plesset perturbation theory (MP2) and Hartree Fock (HF) in the gas phase as well as in different media like ethanol, DMSO and heptane. FT-IR and FT-Raman spectra were computed as well as recorded and fundamental vibrational wavenumbers were assigned. The electronic absorption spectra were calculated by employing the time-dependent density functional theory (TD-DFT) to get the information about excitation energies, oscillator strength and excited state geometries in gas phase and in different solvent media. Chemical activity and chemical stability obtained by HOMO-LUMO studies using a HF/6-31[Formula: see text]G and MP2/6-311[Formula: see text]G calculations. The chemical interpretation of hyperconjugation interactions obtained by the Natural Bond Orbital (NBO) analysis. Moreover, electrostatic potential (ESP) calculations performed to get the visual representation of relative polarity of molecule. Thermodynamic parameters like enthalpy, entropy, heat capacity, and Gibbs free energy computed with varying temperature from 10[Formula: see text]K to 500[Formula: see text]K. The aim of the current investigation is to find out the quantum chemical properties of the title compound which show an active role in the pharmaceutical and printing industries.","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219633620500200","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219633620500200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
In the present work, we have studied the 2-hydroxy 2-methyl propiophenone (2H2MPP) theoretically as well as experimentally. The optimized molecular structure has been obtained by the density functional theory (DFT), second-order Moller–Plesset perturbation theory (MP2) and Hartree Fock (HF) in the gas phase as well as in different media like ethanol, DMSO and heptane. FT-IR and FT-Raman spectra were computed as well as recorded and fundamental vibrational wavenumbers were assigned. The electronic absorption spectra were calculated by employing the time-dependent density functional theory (TD-DFT) to get the information about excitation energies, oscillator strength and excited state geometries in gas phase and in different solvent media. Chemical activity and chemical stability obtained by HOMO-LUMO studies using a HF/6-31[Formula: see text]G and MP2/6-311[Formula: see text]G calculations. The chemical interpretation of hyperconjugation interactions obtained by the Natural Bond Orbital (NBO) analysis. Moreover, electrostatic potential (ESP) calculations performed to get the visual representation of relative polarity of molecule. Thermodynamic parameters like enthalpy, entropy, heat capacity, and Gibbs free energy computed with varying temperature from 10[Formula: see text]K to 500[Formula: see text]K. The aim of the current investigation is to find out the quantum chemical properties of the title compound which show an active role in the pharmaceutical and printing industries.
期刊介绍:
The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry.
JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem.
Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.