J. Voermans, J. Rabault, A. Marchenko, T. Nose, T. Waseda, A. Babanin
{"title":"Estimating the elastic modulus of landfast ice from wave observations","authors":"J. Voermans, J. Rabault, A. Marchenko, T. Nose, T. Waseda, A. Babanin","doi":"10.1017/jog.2023.63","DOIUrl":null,"url":null,"abstract":"\n Progress in our understanding of wave–ice interactions is currently hindered by the lack of in situ observations and information of sea-ice properties, including the elastic modulus. Here, we estimate the effective elastic modulus of sea ice using observations of waves in ice through the deployment of three open-source geophone recorders on landfast sea ice. From observations of low-frequency dispersive waves, we obtain an estimate of the effective elastic modulus in the range of 0.4–0.7 GPa. This is lower than the purely elastic modulus of the ice estimated at 1 GPa as derived from in situ beam experiments. Importantly, our experimental observation is significantly lower than the default value currently in use in wave models. While our estimate is not representative for all sea ice, it does indicate that considerably more measurements are required to provide confidence in the development of parameterizations for this complex sea-ice property for wave models.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.63","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Progress in our understanding of wave–ice interactions is currently hindered by the lack of in situ observations and information of sea-ice properties, including the elastic modulus. Here, we estimate the effective elastic modulus of sea ice using observations of waves in ice through the deployment of three open-source geophone recorders on landfast sea ice. From observations of low-frequency dispersive waves, we obtain an estimate of the effective elastic modulus in the range of 0.4–0.7 GPa. This is lower than the purely elastic modulus of the ice estimated at 1 GPa as derived from in situ beam experiments. Importantly, our experimental observation is significantly lower than the default value currently in use in wave models. While our estimate is not representative for all sea ice, it does indicate that considerably more measurements are required to provide confidence in the development of parameterizations for this complex sea-ice property for wave models.
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.