Optimization of Current Carrying Muticables using Topological and Shape Sensitivity

IF 0.8 4区 数学
Zakaria Belhachmi sci
{"title":"Optimization of Current Carrying Muticables using Topological and Shape Sensitivity","authors":"Zakaria Belhachmi sci","doi":"10.4208/jms.v52n4.19.04","DOIUrl":null,"url":null,"abstract":"In this paper, we use the topological and shape gradient framework, to optimize a current carrying multicables. The geometry of the multicables is modeled as a coated inclusions with different conductivities and the problem we are interested is the location of the inclusions to get a suitable thermal environnent. We solve numerically the optimization problem using topological and shape gradient strategy. Finally, we present some numerical experiments. AMS subject classifications: 49Q10, 49Q12, 65K10, 68W25.","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v52n4.19.04","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we use the topological and shape gradient framework, to optimize a current carrying multicables. The geometry of the multicables is modeled as a coated inclusions with different conductivities and the problem we are interested is the location of the inclusions to get a suitable thermal environnent. We solve numerically the optimization problem using topological and shape gradient strategy. Finally, we present some numerical experiments. AMS subject classifications: 49Q10, 49Q12, 65K10, 68W25.
基于拓扑和形状灵敏度的载流可变参数优化
本文采用拓扑和形状梯度框架,对载流多电缆进行优化。将复合材料的几何形状建模为具有不同电导率的包覆包体,我们感兴趣的问题是包体的位置以获得合适的热环境。利用拓扑和形状梯度策略对优化问题进行了数值求解。最后,我们给出了一些数值实验。AMS学科分类:49Q10、49Q12、65K10、68W25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信