A quasi-analytical solution of homogeneous extended surfaces heat diffusion equation

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ernest Léontin Lemoubou, Hervé Thierry Tagne Kamdem
{"title":"A quasi-analytical solution of homogeneous extended surfaces heat diffusion equation","authors":"Ernest Léontin Lemoubou,&nbsp;Hervé Thierry Tagne Kamdem","doi":"10.1186/s40712-017-0084-4","DOIUrl":null,"url":null,"abstract":"<p>In this study, a quasi-analytical solution for longitudinal fin and pin heat conduction problems is investigated.</p><p>The differential transform method, which is based on the Taylor series expansion, is adapted for the development of the solution. The proposed differential transform solution uses a set of mathematical operations to transform the heat conduction equation together with the fin profile in order to yield a closeform series of homogeneous extended surface heat diffusion equation.</p><p>The application of the proposed differential transform method solution to longitudinal fins of rectangular and triangular profiles and pins of cylindrical and conical profiles heat conduction problems showed an excellent agreement on both fin temperature and efficiencies when compared to exact results. Therefore, the proposed differential transform method can be useful for optimal design of practical extended surfaces with suitable profile for temperature response.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"12 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2017-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-017-0084-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-017-0084-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a quasi-analytical solution for longitudinal fin and pin heat conduction problems is investigated.

The differential transform method, which is based on the Taylor series expansion, is adapted for the development of the solution. The proposed differential transform solution uses a set of mathematical operations to transform the heat conduction equation together with the fin profile in order to yield a closeform series of homogeneous extended surface heat diffusion equation.

The application of the proposed differential transform method solution to longitudinal fins of rectangular and triangular profiles and pins of cylindrical and conical profiles heat conduction problems showed an excellent agreement on both fin temperature and efficiencies when compared to exact results. Therefore, the proposed differential transform method can be useful for optimal design of practical extended surfaces with suitable profile for temperature response.

Abstract Image

齐次扩展表面热扩散方程的拟解析解
本文研究了纵翅和纵针热传导问题的拟解析解。采用基于泰勒级数展开的微分变换方法求解。所提出的微分变换解使用一组数学运算将热传导方程与翅片剖面进行变换,从而得到一系列紧密的齐次扩展表面热扩散方程。将所提出的微分变换方法应用于矩形和三角形型纵鳍和圆柱形和锥形型销钉的热传导问题,结果表明,与精确结果相比,该方法在翅片温度和效率上都有很好的一致性。因此,所提出的微分变换方法可用于具有适合温度响应的实际扩展曲面的优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信