D. D. Thiaré, P. A. Diaw, O. Mbaye, Diégane Sarr, M. D. Gaye-Seye, S. Ruellan, P. Giamarchi, F. Delattre, A. Coly, J. Aaron
{"title":"Photodegradation study of the fenvalerate insecticide by 1H NMR, 13C NMR, and GC-MS and structural elucidation of its transformation products","authors":"D. D. Thiaré, P. A. Diaw, O. Mbaye, Diégane Sarr, M. D. Gaye-Seye, S. Ruellan, P. Giamarchi, F. Delattre, A. Coly, J. Aaron","doi":"10.20450/mjcce.2022.2571","DOIUrl":null,"url":null,"abstract":"The photolysis of fenvalerate, a pyrethroid insecticide, was studied in acetonitrile by 1H nuclear magnetic resonance (NMR) and 13C NMR to identify the site of bond cleavage and gas chromatography-mass spectrometry (GC-MS) to establish the chemical structure of fenvalerate photoproducts. Ultraviolet (UV) irradiation of fenvalerate solutions was performed for 18 h with a solar light simulator, and the photolysis reaction obeyed first-order kinetics. Photolysis half-life time (t1/2) values ranged between 15.25 and 21.63 h (mean photodegradation percentage = 51.7 %) for 1H NMR and between 4.55 and 8.06 h (mean photodegradation percentage > 80 %) for 13C NMR. We observed five sites of bond cleavage, namely carbonyl-tertiary carbon, tertiary carbon-tertiary carbon, carbonyl-oxygen, carboxyl-tertiary carbon, and aromatic carbon-tertiary carbon, yielding photoproducts formation. GC-MS was associated with 1H NMR and 13C NMR to obtain a complete photodegradation mechanism. Before UV irradiation, two chromatogram peaks were obtained, due to the two fenvalerate isomers. Under irradiation, both peaks decreased, and new peaks appeared, corresponding to photoproduct formation. After a 12- to 13-h irradiation, 99.39 % of fenvalerate was degraded with a mean rate constant of 0.305 h–1. The chemical structure of the formed photoproducts was identified, either by using the National Institute of Standards and Technology (NIST) mass spectral database or by interpreting the mass spectra. Finally, a detailed mechanism was proposed for fenvalerate photodegradation.","PeriodicalId":18088,"journal":{"name":"Macedonian Journal of Chemistry and Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macedonian Journal of Chemistry and Chemical Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/mjcce.2022.2571","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The photolysis of fenvalerate, a pyrethroid insecticide, was studied in acetonitrile by 1H nuclear magnetic resonance (NMR) and 13C NMR to identify the site of bond cleavage and gas chromatography-mass spectrometry (GC-MS) to establish the chemical structure of fenvalerate photoproducts. Ultraviolet (UV) irradiation of fenvalerate solutions was performed for 18 h with a solar light simulator, and the photolysis reaction obeyed first-order kinetics. Photolysis half-life time (t1/2) values ranged between 15.25 and 21.63 h (mean photodegradation percentage = 51.7 %) for 1H NMR and between 4.55 and 8.06 h (mean photodegradation percentage > 80 %) for 13C NMR. We observed five sites of bond cleavage, namely carbonyl-tertiary carbon, tertiary carbon-tertiary carbon, carbonyl-oxygen, carboxyl-tertiary carbon, and aromatic carbon-tertiary carbon, yielding photoproducts formation. GC-MS was associated with 1H NMR and 13C NMR to obtain a complete photodegradation mechanism. Before UV irradiation, two chromatogram peaks were obtained, due to the two fenvalerate isomers. Under irradiation, both peaks decreased, and new peaks appeared, corresponding to photoproduct formation. After a 12- to 13-h irradiation, 99.39 % of fenvalerate was degraded with a mean rate constant of 0.305 h–1. The chemical structure of the formed photoproducts was identified, either by using the National Institute of Standards and Technology (NIST) mass spectral database or by interpreting the mass spectra. Finally, a detailed mechanism was proposed for fenvalerate photodegradation.
期刊介绍:
Macedonian Journal of Chemistry and Chemical Engineering (Maced. J. Chem. Chem. Eng.) is an official publication of the Society of Chemists and Technologists of Macedonia. It is a not-for-profit open acess journal published twice a year. The journal publishes original scientific papers, short communications, reviews and educational papers from all fields of chemistry, chemical engineering, food technology, biotechnology and material sciences, metallurgy and related fields. The papers published in the Journal are summarized in Chemical Abstracts.