Jing-Li Xuan, Sonja J. Scheffer, Owen Lonsdale, Brian K. Cassel, Matthew L. Lewis, Charles S. Eiseman, Wan-Xue Liu, Brian M. Wiegmann
{"title":"A genome-wide phylogeny and the diversification of genus Liriomyza (Diptera: Agromyzidae) inferred from anchored phylogenomics","authors":"Jing-Li Xuan, Sonja J. Scheffer, Owen Lonsdale, Brian K. Cassel, Matthew L. Lewis, Charles S. Eiseman, Wan-Xue Liu, Brian M. Wiegmann","doi":"10.1111/syen.12569","DOIUrl":null,"url":null,"abstract":"<p>The genus <i>Liriomyza</i> Mik (Diptera: Agromyzidae) is a diverse and globally distributed group of acalyptrate flies. Phylogenetic relationships among <i>Liriomyza</i> species have remained incompletely investigated and have never been fully addressed using molecular data. Here, we reconstruct the phylogeny of the genus <i>Liriomyza</i> using various phylogenetic methods (maximum likelihood, Bayesian inference, and gene tree coalescence) on target-capture-based phylogenomic datasets (nucleotides and amino acids) obtained from anchored hybrid enrichment (AHE). We have recovered tree topologies that are nearly congruent across all data types and methods, and individual clade support is strong across all phylogenetic analyses. Moreover, defined morphological species groups and clades are well-supported in our best estimates of the molecular phylogeny. <i>Liriomyza violivora</i> (Spencer) is a sister group to all remaining sampled <i>Liriomyza</i> species, and the well-known polyphagous vegetable pests [<i>L. huidobrensis</i> (Blanchard), <i>L. langei</i> Frick, <i>L. bryoniae.</i> (Kaltenbach), <i>L. trifolii</i> (Burgess), <i>L. sativae</i> Blanchard, and <i>L. brassicae</i> (Riley)]. belong to multiple clades that are not particularly closely related on the trees. Often, closely related <i>Liriomyza</i> species feed on distantly related host plants. We reject the hypothesis that cophylogenetic processes between <i>Liriomyza</i> species and their host plants drive diversification in this genus. Instead, <i>Liriomyza</i> exhibits a widespread pattern of major host shifts across plant taxa. Our new phylogenetic estimate for <i>Liriomyza</i> species provides considerable new information on the evolution of host-use patterns in this genus. In addition, it provides a framework for further study of the morphology, ecology, and diversification of these important flies.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12569","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/syen.12569","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
The genus Liriomyza Mik (Diptera: Agromyzidae) is a diverse and globally distributed group of acalyptrate flies. Phylogenetic relationships among Liriomyza species have remained incompletely investigated and have never been fully addressed using molecular data. Here, we reconstruct the phylogeny of the genus Liriomyza using various phylogenetic methods (maximum likelihood, Bayesian inference, and gene tree coalescence) on target-capture-based phylogenomic datasets (nucleotides and amino acids) obtained from anchored hybrid enrichment (AHE). We have recovered tree topologies that are nearly congruent across all data types and methods, and individual clade support is strong across all phylogenetic analyses. Moreover, defined morphological species groups and clades are well-supported in our best estimates of the molecular phylogeny. Liriomyza violivora (Spencer) is a sister group to all remaining sampled Liriomyza species, and the well-known polyphagous vegetable pests [L. huidobrensis (Blanchard), L. langei Frick, L. bryoniae. (Kaltenbach), L. trifolii (Burgess), L. sativae Blanchard, and L. brassicae (Riley)]. belong to multiple clades that are not particularly closely related on the trees. Often, closely related Liriomyza species feed on distantly related host plants. We reject the hypothesis that cophylogenetic processes between Liriomyza species and their host plants drive diversification in this genus. Instead, Liriomyza exhibits a widespread pattern of major host shifts across plant taxa. Our new phylogenetic estimate for Liriomyza species provides considerable new information on the evolution of host-use patterns in this genus. In addition, it provides a framework for further study of the morphology, ecology, and diversification of these important flies.
期刊介绍:
Systematic Entomology publishes original papers on insect systematics, phylogenetics and integrative taxonomy, with a preference for general interest papers of broad biological, evolutionary or zoogeographical relevance.