{"title":"Document Summarization with Latent Queries","authors":"Yumo Xu, Mirella Lapata","doi":"10.1162/tacl_a_00480","DOIUrl":null,"url":null,"abstract":"The availability of large-scale datasets has driven the development of neural models that create generic summaries for single or multiple documents. For query-focused summarization (QFS), labeled training data in the form of queries, documents, and summaries is not readily available. We provide a unified modeling framework for any kind of summarization, under the assumption that all summaries are a response to a query, which is observed in the case of QFS and latent in the case of generic summarization. We model queries as discrete latent variables over document tokens, and learn representations compatible with observed and unobserved query verbalizations. Our framework formulates summarization as a generative process, and jointly optimizes a latent query model and a conditional language model. Despite learning from generic summarization data only, our approach outperforms strong comparison systems across benchmarks, query types, document settings, and target domains.1","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"10 1","pages":"623-638"},"PeriodicalIF":4.2000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00480","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 15
Abstract
The availability of large-scale datasets has driven the development of neural models that create generic summaries for single or multiple documents. For query-focused summarization (QFS), labeled training data in the form of queries, documents, and summaries is not readily available. We provide a unified modeling framework for any kind of summarization, under the assumption that all summaries are a response to a query, which is observed in the case of QFS and latent in the case of generic summarization. We model queries as discrete latent variables over document tokens, and learn representations compatible with observed and unobserved query verbalizations. Our framework formulates summarization as a generative process, and jointly optimizes a latent query model and a conditional language model. Despite learning from generic summarization data only, our approach outperforms strong comparison systems across benchmarks, query types, document settings, and target domains.1
期刊介绍:
The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.