The absolute anabelian geometry of quasi-tripods

IF 0.5 4区 数学 Q3 MATHEMATICS
Yuichiro Hoshi
{"title":"The absolute anabelian geometry of quasi-tripods","authors":"Yuichiro Hoshi","doi":"10.1215/21562261-2022-0005","DOIUrl":null,"url":null,"abstract":"— In the present paper, we study the absolute anabelian geometry of hyperbolic orbicurves. The first main result of the present paper shows the absolute version of the Grothendieck conjecture for quasi-tripods — e.g., hyperbolic curves of genus less than two — over, for instance, finitely generated extensions of mixed-characteristic local fields. Moreover, we prove some absolute anabelian results for certain hyperbolic polycurves as applications of the first main result. Finally, we also show the absolute version of the Grothendieck conjecture for MLF-isotrivial hyperbolic orbicurves over finitely generated extensions of mixedcharacteristic local fields.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

— In the present paper, we study the absolute anabelian geometry of hyperbolic orbicurves. The first main result of the present paper shows the absolute version of the Grothendieck conjecture for quasi-tripods — e.g., hyperbolic curves of genus less than two — over, for instance, finitely generated extensions of mixed-characteristic local fields. Moreover, we prove some absolute anabelian results for certain hyperbolic polycurves as applications of the first main result. Finally, we also show the absolute version of the Grothendieck conjecture for MLF-isotrivial hyperbolic orbicurves over finitely generated extensions of mixedcharacteristic local fields.
准三脚架的绝对可逆几何
--在本文中,我们研究了双曲轨道曲线的绝对亚贝利亚几何。本文的第一个主要结果表明,在混合特征局部域的有限生成扩展上,拟三脚架(例如亏格小于2的双曲曲线)的Grothendieck猜想的绝对版本。此外,作为第一个主要结果的应用,我们还证明了某些双曲多曲线的一些绝对亚贝利结果。最后,我们还展示了混合特征局部域的有限生成扩展上MLF等熵双曲轨道曲线的Grothendieck猜想的绝对版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信