{"title":"Matching Preclusion of the Generalized Petersen Graph","authors":"Ajay Arora, E. Cheng, Christopher Melekian","doi":"10.20429/TAG.2019.060105","DOIUrl":null,"url":null,"abstract":"The matching preclusion number of a graph with an even number of vertices is the minimum number of edges whose deletion results in a graph with no perfect matchings. In this paper we determine the matching preclusion number for the generalized Petersen graph P (n, k) and classify the optimal sets.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/TAG.2019.060105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
The matching preclusion number of a graph with an even number of vertices is the minimum number of edges whose deletion results in a graph with no perfect matchings. In this paper we determine the matching preclusion number for the generalized Petersen graph P (n, k) and classify the optimal sets.