Proposal of steel stress-strain relationships and simple analytical models of beams considering strain-rate effects at elevated temperatures

IF 0.9 Q4 CONSTRUCTION & BUILDING TECHNOLOGY
F. Ozaki, T. Umemura
{"title":"Proposal of steel stress-strain relationships and simple analytical models of beams considering strain-rate effects at elevated temperatures","authors":"F. Ozaki, T. Umemura","doi":"10.1108/jsfe-01-2022-0001","DOIUrl":null,"url":null,"abstract":"PurposeIn this study, engineering stress-strain relationships considering an effect of strain rate on steel materials at elevated temperatures were formulated and a simplified analytical model using a two-dimensional beam element to analytically examine the effect of strain rate on the load-bearing capacity and collapse temperature was proposed.Design/methodology/approachThe stress-strain relationships taking into account temperature, strain, and strain rate were established based on the past coupon test results with strain rate as the test parameter. Furthermore, an elasto-plastic analysis using a two-dimensional beam element, which considered the effect on strain rate, was conducted for both transient- and steady-state conditions.FindingsThe analytical results agreed relatively well with the test results, which used small steel beam specimens with a rectangular cross-section under various heating rates (transient-state condition) and deformation rates (steady-state condition). It was found that the bending strength and collapse temperature obtained from the parametric analyses agreed relatively well with those evaluated using the effective strength obtained from the coupon tests with strain equal to 0.01 or 0.02 under the fast strain rates.Originality/valueThe effect of stress degradation, including the stress-strain relationships at elevated temperature, was mitigated by considering the effect of strain rate on the analytical model. This is an important point to consider when considering the effect of strain rate on steel structural analysis at elevated temperatures to maintain analytical stability unaccompanied by the stress degradation.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Fire Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jsfe-01-2022-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

PurposeIn this study, engineering stress-strain relationships considering an effect of strain rate on steel materials at elevated temperatures were formulated and a simplified analytical model using a two-dimensional beam element to analytically examine the effect of strain rate on the load-bearing capacity and collapse temperature was proposed.Design/methodology/approachThe stress-strain relationships taking into account temperature, strain, and strain rate were established based on the past coupon test results with strain rate as the test parameter. Furthermore, an elasto-plastic analysis using a two-dimensional beam element, which considered the effect on strain rate, was conducted for both transient- and steady-state conditions.FindingsThe analytical results agreed relatively well with the test results, which used small steel beam specimens with a rectangular cross-section under various heating rates (transient-state condition) and deformation rates (steady-state condition). It was found that the bending strength and collapse temperature obtained from the parametric analyses agreed relatively well with those evaluated using the effective strength obtained from the coupon tests with strain equal to 0.01 or 0.02 under the fast strain rates.Originality/valueThe effect of stress degradation, including the stress-strain relationships at elevated temperature, was mitigated by considering the effect of strain rate on the analytical model. This is an important point to consider when considering the effect of strain rate on steel structural analysis at elevated temperatures to maintain analytical stability unaccompanied by the stress degradation.
考虑高温下应变率效应的钢的应力-应变关系和梁的简单解析模型的提出
目的建立了考虑应变速率对高温下钢材料的工程应力-应变关系,建立了基于二维梁单元的简化分析模型,分析了应变速率对钢材料承载能力和倒塌温度的影响。设计/方法/方法基于以往的贴片试验结果,以应变率为试验参数,建立考虑温度、应变和应变率的应力-应变关系。此外,采用二维梁单元进行了瞬态和稳态条件下的弹塑性分析,考虑了应变率的影响。分析结果与矩形截面小钢梁试件在不同升温速率(瞬态工况)和变形速率(稳态工况)下的试验结果吻合较好。结果表明,在快速应变速率下,参数分析得到的抗弯强度和坍塌温度与应变为0.01或0.02时的有效强度计算结果吻合较好。通过考虑应变率对分析模型的影响,减轻了应力退化的影响,包括高温下的应力-应变关系。在考虑应变速率对钢结构高温分析的影响时,这是一个重要的考虑点,以保持分析稳定性而不伴有应力退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Structural Fire Engineering
Journal of Structural Fire Engineering CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
2.20
自引率
10.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信