{"title":"Experimental and Numerical Investigation of Reinforced Sand Slope Using Geogird Encased Stone Column","authors":"M. Hajiazizi, M. Nasiri","doi":"10.22059/CEIJ.2019.253069.1468","DOIUrl":null,"url":null,"abstract":"Among all of the slope stability methods, use of stone columns and geosynthetic elements can be a good way for stabilizing. One of the efficient ways in order to reinforce earth slopes is Geogrid Encased Stone Column (GESC). This technique can dramatically increase bearing capacity and decrease settlement rate. The aim of this paper is experimentally to investigate a comparison between the behavior of Ordinary Stone Column (OSC) and GESC for reinforcing of sand slopes. The slope was constructed using raining technique and reinforced using GESC. The slope saturated through precipitation and loading procedure applied. The obtained results compared and verified with 3D Finite Difference Method (3DFDM). Both experimental and numerical analyses indicated that location of GESC in middle of the slope increases the bearing capacity of slope crown 2.17 times than OSC.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/CEIJ.2019.253069.1468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 4
Abstract
Among all of the slope stability methods, use of stone columns and geosynthetic elements can be a good way for stabilizing. One of the efficient ways in order to reinforce earth slopes is Geogrid Encased Stone Column (GESC). This technique can dramatically increase bearing capacity and decrease settlement rate. The aim of this paper is experimentally to investigate a comparison between the behavior of Ordinary Stone Column (OSC) and GESC for reinforcing of sand slopes. The slope was constructed using raining technique and reinforced using GESC. The slope saturated through precipitation and loading procedure applied. The obtained results compared and verified with 3D Finite Difference Method (3DFDM). Both experimental and numerical analyses indicated that location of GESC in middle of the slope increases the bearing capacity of slope crown 2.17 times than OSC.