Products of synchronous games

IF 0.7 3区 数学 Q2 MATHEMATICS
Laura Manvcinska, V. Paulsen, I. Todorov, A. Winter
{"title":"Products of synchronous games","authors":"Laura Manvcinska, V. Paulsen, I. Todorov, A. Winter","doi":"10.4064/sm221201-19-4","DOIUrl":null,"url":null,"abstract":"We show that the *-algebra of the product of two synchronous games is the tensor product of the corresponding *-algebras. We prove that the product game has a perfect C*-strategy if and only if each of the individual games does, and that in this case the C*-algebra of the product game is *-isomorphic to the maximal C*-tensor product of the individual C*-algebras. We provide examples of synchronous games whose synchronous values are strictly supermultiplicative.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm221201-19-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We show that the *-algebra of the product of two synchronous games is the tensor product of the corresponding *-algebras. We prove that the product game has a perfect C*-strategy if and only if each of the individual games does, and that in this case the C*-algebra of the product game is *-isomorphic to the maximal C*-tensor product of the individual C*-algebras. We provide examples of synchronous games whose synchronous values are strictly supermultiplicative.
同步游戏产品
我们证明了两个同步对策乘积的*-代数是相应*-代数的张量乘积。我们证明了乘积对策有一个完美的C*-策略,当且仅当每个单独的对策都有,并且在这种情况下,乘积对策的C*-代数与单独的C*代数的最大C*-张量积是*-同构的。我们提供了同步对策的例子,其同步值是严格超乘的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信