A. Vivat, K. Tretyak, I. Savchyn, M. Navodych, O. Lano
{"title":"Investigation of determining the accuracy of spatial vectors by the satellite method in a real time mode","authors":"A. Vivat, K. Tretyak, I. Savchyn, M. Navodych, O. Lano","doi":"10.1515/jag-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract The study of determining the accuracy of spatial vectors by the global navigation satellite system (GNSS) in real time (RTK) was conducted. The possibility of construction of precision geodetic networks by the combined method of static and RTK GNSS measurements which correspond to the set accuracy and reach the maximum economic efficiency is investigated. A technique providing the densification of GNSS network and the use of two simultaneously operating GNSS receivers (Rover) is proposed. The research was carried out at the points of the GNSS network of Dnister Pumped Storage Power Plant (PSPP) (Ukraine). As a result of comparison of reference and measured elements of vectors, it was found that the average absolute error in determining the spatial distance of 14 vectors was 5.3 mm. Rejection of vectors with a closed horizon reduced the error to 2.1 mm. The vectors are most accurately determined from two satellite systems (GPS, GLONASS) and from a single base station. The recommended distance to the base station is within one kilometer. Increasing the accuracy by 75 % in determining the vector by the proposed method in RTK mode is also shown. As a result of a posteriori optimization of combined GNSS networks, high accuracy on the reliability of vectors determined by the method in RTK mode was confirmed. The technique can be used to construct precision networks, to carry out repeated measurements for the monitoring of large engineering structures with an open horizon.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The study of determining the accuracy of spatial vectors by the global navigation satellite system (GNSS) in real time (RTK) was conducted. The possibility of construction of precision geodetic networks by the combined method of static and RTK GNSS measurements which correspond to the set accuracy and reach the maximum economic efficiency is investigated. A technique providing the densification of GNSS network and the use of two simultaneously operating GNSS receivers (Rover) is proposed. The research was carried out at the points of the GNSS network of Dnister Pumped Storage Power Plant (PSPP) (Ukraine). As a result of comparison of reference and measured elements of vectors, it was found that the average absolute error in determining the spatial distance of 14 vectors was 5.3 mm. Rejection of vectors with a closed horizon reduced the error to 2.1 mm. The vectors are most accurately determined from two satellite systems (GPS, GLONASS) and from a single base station. The recommended distance to the base station is within one kilometer. Increasing the accuracy by 75 % in determining the vector by the proposed method in RTK mode is also shown. As a result of a posteriori optimization of combined GNSS networks, high accuracy on the reliability of vectors determined by the method in RTK mode was confirmed. The technique can be used to construct precision networks, to carry out repeated measurements for the monitoring of large engineering structures with an open horizon.