The hyperkähler metric on the almost-Fuchsian moduli space

IF 1.3 Q1 MATHEMATICS
Samuel Trautwein
{"title":"The hyperkähler metric on the almost-Fuchsian moduli space","authors":"Samuel Trautwein","doi":"10.4171/emss/30","DOIUrl":null,"url":null,"abstract":"Donaldon constructed a hyperk\\\"ahler moduli space $\\mathcal{M}$ associated to a closed oriented surface $\\Sigma$ with $\\textrm{genus}(\\Sigma) \\geq 2$. This embeds naturally into the cotangent bundle $T^*\\mathcal{T}(\\Sigma)$ of Teichm\\\"uller space or can be identified with the almost-Fuchsian moduli space associated to $\\Sigma$. The later is the moduli space of quasi-Fuchsian threefolds which contain a unique incompressible minimal surface with principal curvatures in $(-1,1)$. Donaldson outlined various remarkable properties of this moduli space for which we provide complete proofs in this paper: On the cotangent-bundle of Teichm\\\"uller space, the hyperk\\\"ahler structure on $\\mathcal{M}$ can be viewed as the Feix--Kaledin hyperk\\\"ahler extension of the Weil--Petersson metric. The almost-Fuchsian moduli space embeds into the $\\textrm{SL}(2,\\mathbb{C})$-representation variety of $\\Sigma$ and the hyperk\\\"ahler structure on $\\mathcal{M}$ extends the Goldman holomorphic symplectic structure. Here the natural complex structure corresponds to the second complex structure in the first picture. Moreover, the area of the minimal surface in an almost-Fuchsian manifold provides a K\\\"ahler potential for the hyperk\\\"ahler metric. The various identifications are obtained using the work of Uhlenbeck on germs of hyperbolic $3$-manifolds, an explicit map from $\\mathcal{M}$ to $\\mathcal{T}(\\Sigma)\\times \\bar{\\mathcal{T}(\\Sigma)}$ found by Hodge, the simultaneous uniformization theorem of Bers, and the theory of Higgs bundles introduced by Hitchin.","PeriodicalId":43833,"journal":{"name":"EMS Surveys in Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/emss/30","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMS Surveys in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/emss/30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

Abstract

Donaldon constructed a hyperk\"ahler moduli space $\mathcal{M}$ associated to a closed oriented surface $\Sigma$ with $\textrm{genus}(\Sigma) \geq 2$. This embeds naturally into the cotangent bundle $T^*\mathcal{T}(\Sigma)$ of Teichm\"uller space or can be identified with the almost-Fuchsian moduli space associated to $\Sigma$. The later is the moduli space of quasi-Fuchsian threefolds which contain a unique incompressible minimal surface with principal curvatures in $(-1,1)$. Donaldson outlined various remarkable properties of this moduli space for which we provide complete proofs in this paper: On the cotangent-bundle of Teichm\"uller space, the hyperk\"ahler structure on $\mathcal{M}$ can be viewed as the Feix--Kaledin hyperk\"ahler extension of the Weil--Petersson metric. The almost-Fuchsian moduli space embeds into the $\textrm{SL}(2,\mathbb{C})$-representation variety of $\Sigma$ and the hyperk\"ahler structure on $\mathcal{M}$ extends the Goldman holomorphic symplectic structure. Here the natural complex structure corresponds to the second complex structure in the first picture. Moreover, the area of the minimal surface in an almost-Fuchsian manifold provides a K\"ahler potential for the hyperk\"ahler metric. The various identifications are obtained using the work of Uhlenbeck on germs of hyperbolic $3$-manifolds, an explicit map from $\mathcal{M}$ to $\mathcal{T}(\Sigma)\times \bar{\mathcal{T}(\Sigma)}$ found by Hodge, the simultaneous uniformization theorem of Bers, and the theory of Higgs bundles introduced by Hitchin.
近似fuchsian模空间上的hyperkähler度规
Donaldon构造了一个超k模空间$\mathcal{M}$,它与一个具有$\textrm{亏格}(\ Sigma)\ geq2$的闭定向曲面$\ Sigma$相关联。它自然嵌入到Teichm\“uller空间的余切丛$T^*\mathcal{T}(\Sigma)$中,或者可以用与$\ Sigma$相关联的几乎Fuchsian模空间来识别。后者是拟Fuchsian三重的模空间,它包含一个主曲率为$(-1,1)$的不可压缩极小曲面。Donaldson概述了这个模空间的各种显著性质,我们在本文中为其提供了完整的证明:在Teichm“uller空间的余切丛上,$\mathcal{M}$上的超k“ahler结构可以看作是Weil-Petersson度量的Feix-Kaledin超k”ahler扩展。几乎Fuchsian模空间嵌入到$\textrm{SL}(2,\mathbb{C})$\mathcal{M}$上$\ Sigma$和hyperk“ahler结构的$表示变体扩展了Goldman全纯辛结构。这里的自然复结构对应于第一张图中的第二个复结构。此外,几乎Fuchsian流形中的最小曲面的面积为hyperk提供了K“ahler势\“ahler度量。利用Uhlenbeck关于双曲$3$-流形芽的工作,Hodge发现的从$\mathcal{M}$到$\mathical{T}(\ Sigma)\times\bar{\mathcal{T}(\ Sigma\)}$的显式映射,Bers的同时一致化定理,以及Hitchin引入的Higgs丛理论,得到了各种识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信