From regression rank scores to robust inference for censored quantile regression

Pub Date : 2022-11-15 DOI:10.1002/cjs.11740
Yuan Sun, Xuming He
{"title":"From regression rank scores to robust inference for censored quantile regression","authors":"Yuan Sun,&nbsp;Xuming He","doi":"10.1002/cjs.11740","DOIUrl":null,"url":null,"abstract":"<p>Quantile regression for right- or left-censored outcomes has attracted attention due to its ability to accommodate heterogeneity in regression analysis of survival times. Rank-based inferential methods have desirable properties for quantile regression analysis, but censored data poses challenges to the general concept of ranking. In this article, we propose a notion of censored quantile regression rank scores, which enables us to construct rank-based tests for quantile regression coefficients at a single quantile or over a quantile region. A model-based bootstrap algorithm is proposed to implement the tests. We also illustrate the advantage of focusing on a quantile region instead of a single quantile level when testing the effect of certain covariates in a quantile regression framework.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11740","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Quantile regression for right- or left-censored outcomes has attracted attention due to its ability to accommodate heterogeneity in regression analysis of survival times. Rank-based inferential methods have desirable properties for quantile regression analysis, but censored data poses challenges to the general concept of ranking. In this article, we propose a notion of censored quantile regression rank scores, which enables us to construct rank-based tests for quantile regression coefficients at a single quantile or over a quantile region. A model-based bootstrap algorithm is proposed to implement the tests. We also illustrate the advantage of focusing on a quantile region instead of a single quantile level when testing the effect of certain covariates in a quantile regression framework.

Abstract Image

分享
查看原文
从回归等级分数到删节分位数回归的稳健推理
由于能够适应生存时间回归分析中的异质性,右截或左截结果的分位数回归引起了人们的注意。基于排名的推理方法对分位数回归分析具有理想的特性,但审查数据对排名的一般概念提出了挑战。在本文中,我们提出了删节分位数回归秩分数的概念,它使我们能够在单个分位数或分位数区域上构建基于秩的分位数回归系数检验。提出了一种基于模型的自举算法来实现测试。我们还说明了在分位数回归框架中测试某些协变量的影响时,关注分位数区域而不是单个分位数水平的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信