{"title":"Time‐varying\n β\n ‐model for dynamic directed networks","authors":"Yuqing Du, Lianqiang Qu, T. Yan, Yuan Zhang","doi":"10.1111/sjos.12650","DOIUrl":null,"url":null,"abstract":"We extend the well-known $\\beta$-model for directed graphs to dynamic network setting, where we observe snapshots of adjacency matrices at different time points. We propose a kernel-smoothed likelihood approach for estimating $2n$ time-varying parameters in a network with $n$ nodes, from $N$ snapshots. We establish consistency and asymptotic normality properties of our kernel-smoothed estimators as either $n$ or $N$ diverges. Our results contrast their counterparts in single-network analyses, where $n\\to\\infty$ is invariantly required in asymptotic studies. We conduct comprehensive simulation studies that confirm our theory's prediction and illustrate the performance of our method from various angles. We apply our method to an email data set and obtain meaningful results.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12650","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
We extend the well-known $\beta$-model for directed graphs to dynamic network setting, where we observe snapshots of adjacency matrices at different time points. We propose a kernel-smoothed likelihood approach for estimating $2n$ time-varying parameters in a network with $n$ nodes, from $N$ snapshots. We establish consistency and asymptotic normality properties of our kernel-smoothed estimators as either $n$ or $N$ diverges. Our results contrast their counterparts in single-network analyses, where $n\to\infty$ is invariantly required in asymptotic studies. We conduct comprehensive simulation studies that confirm our theory's prediction and illustrate the performance of our method from various angles. We apply our method to an email data set and obtain meaningful results.
期刊介绍:
The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia.
It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications.
The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems.
The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.