F. Ahmad, S. Mazlan, K. Hudha, Hishammudin Jamaluddin, H. Zamzuri
{"title":"Fuzzy fractional PID gain controller for antilock braking system using an electronic wedge brake mechanism","authors":"F. Ahmad, S. Mazlan, K. Hudha, Hishammudin Jamaluddin, H. Zamzuri","doi":"10.1504/IJVS.2018.10015413","DOIUrl":null,"url":null,"abstract":"This paper focuses on the design of a fuzzy fractional Proportional-Integral-Derivative (PID) controller. The controller which is based on the conventional PID controller is modified to be P1–α I1–β D1–γ with the objective to make the controller more flexible and robust to the changes in input and the parameters. In this control structure, the fuzzy logic control acts as the tuner for the parameters α, β and γ, so that the overall controller parameter can be varied and converge better to the changes in a system. The designed fuzzy fractional PID controller is applied to a validated antilock braking system model using an electronic wedge brake system as the actuator. Numerous numerical simulations and comparisons with other fractional PID/conventional PID controllers show that the fuzzy fractional PID controller can not only ensure good control performance with respect to reference input but also improve the system robustness with respect to model uncertainties.","PeriodicalId":35143,"journal":{"name":"International Journal of Vehicle Safety","volume":"10 1","pages":"97"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVS.2018.10015413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7
Abstract
This paper focuses on the design of a fuzzy fractional Proportional-Integral-Derivative (PID) controller. The controller which is based on the conventional PID controller is modified to be P1–α I1–β D1–γ with the objective to make the controller more flexible and robust to the changes in input and the parameters. In this control structure, the fuzzy logic control acts as the tuner for the parameters α, β and γ, so that the overall controller parameter can be varied and converge better to the changes in a system. The designed fuzzy fractional PID controller is applied to a validated antilock braking system model using an electronic wedge brake system as the actuator. Numerous numerical simulations and comparisons with other fractional PID/conventional PID controllers show that the fuzzy fractional PID controller can not only ensure good control performance with respect to reference input but also improve the system robustness with respect to model uncertainties.
期刊介绍:
The IJVS aims to provide a refereed and authoritative source of information in the field of vehicle safety design, research, and development. It serves applied scientists, engineers, policy makers and safety advocates with a platform to develop, promote, and coordinate the science, technology and practice of vehicle safety. IJVS also seeks to establish channels of communication between industry and academy, industry and government in the field of vehicle safety. IJVS is published quarterly. It covers the subjects of passive and active safety in road traffic as well as traffic related public health issues, from impact biomechanics to vehicle crashworthiness, and from crash avoidance to intelligent highway systems.