{"title":"Strong property (T) for higher rank lattices","authors":"M. Salle","doi":"10.4310/acta.2019.v223.n1.a3","DOIUrl":null,"url":null,"abstract":"We prove that every lattice in a product of higher rank simple Lie groups or higher rank simple algebraic groups over local fields has Vincent Lafforgue's strong property (T). Over non-archimedean local fields, we also prove that they have strong Banach proerty (T) with respect to all Banach spaces with nontrivial type, whereas in general we obtain such a result with additional hypotheses on the Banach spaces. The novelty is that we deal with non-cocompact lattices, such as $\\mathrm{SL}_n(\\Z)$ for $n \\geq 3$. To do so, we introduce a stronger form of strong property (T) which allows us to deal with more general objects than group representations on Banach spaces that we call two-step representations, namely families indexed by a group of operators between different Banach spaces that we can compose only once. We prove that higher rank groups have this property and that this property passes to undistorted lattices.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2019.v223.n1.a3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 11
Abstract
We prove that every lattice in a product of higher rank simple Lie groups or higher rank simple algebraic groups over local fields has Vincent Lafforgue's strong property (T). Over non-archimedean local fields, we also prove that they have strong Banach proerty (T) with respect to all Banach spaces with nontrivial type, whereas in general we obtain such a result with additional hypotheses on the Banach spaces. The novelty is that we deal with non-cocompact lattices, such as $\mathrm{SL}_n(\Z)$ for $n \geq 3$. To do so, we introduce a stronger form of strong property (T) which allows us to deal with more general objects than group representations on Banach spaces that we call two-step representations, namely families indexed by a group of operators between different Banach spaces that we can compose only once. We prove that higher rank groups have this property and that this property passes to undistorted lattices.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.