Shallow aquifer monitoring using handpump vibration data

IF 3.1 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Achut Manandhar , Heloise Greeff , Patrick Thomson , Rob Hope , David A. Clifton
{"title":"Shallow aquifer monitoring using handpump vibration data","authors":"Achut Manandhar ,&nbsp;Heloise Greeff ,&nbsp;Patrick Thomson ,&nbsp;Rob Hope ,&nbsp;David A. Clifton","doi":"10.1016/j.hydroa.2020.100057","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel technology for monitoring changes in aquifer depth using handpump vibration data. This builds on our previous works using data to track handpump usage and facilitate handpump maintenance systems in rural parts of Kenya. Our motivation is to develop a cost-effective and scalable infrastructure to monitor shallow aquifers in regions where handpumps are already part of water infrastructure, but where traditional sources of groundwater monitoring data may be limited or non-existent. The data is generated using accelerometer sensors attached to the handles of nine handpumps in the study site in Kenya, instrumented for a year. These time-series data from handpumps are individually modelled using machine learning methods to track the changes in the water level with respect to the bottom of the rising main. Results show promise in modelling handpump vibration data with machine learning approaches to provide useful aquifer monitoring information from the “accidental infrastructure” of community handpumps. This technology is intended to complement existing hydrogeological modelling, and one of our key future goals is to integrate these machine learning outputs with hydrogeological information to develop more refined and robust models for shallow aquifer monitoring.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.hydroa.2020.100057","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915520300080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

We present a novel technology for monitoring changes in aquifer depth using handpump vibration data. This builds on our previous works using data to track handpump usage and facilitate handpump maintenance systems in rural parts of Kenya. Our motivation is to develop a cost-effective and scalable infrastructure to monitor shallow aquifers in regions where handpumps are already part of water infrastructure, but where traditional sources of groundwater monitoring data may be limited or non-existent. The data is generated using accelerometer sensors attached to the handles of nine handpumps in the study site in Kenya, instrumented for a year. These time-series data from handpumps are individually modelled using machine learning methods to track the changes in the water level with respect to the bottom of the rising main. Results show promise in modelling handpump vibration data with machine learning approaches to provide useful aquifer monitoring information from the “accidental infrastructure” of community handpumps. This technology is intended to complement existing hydrogeological modelling, and one of our key future goals is to integrate these machine learning outputs with hydrogeological information to develop more refined and robust models for shallow aquifer monitoring.

Abstract Image

利用手泵振动数据进行浅层含水层监测
我们提出了一种利用手泵振动数据监测含水层深度变化的新技术。这项工作建立在我们以前的工作基础上,利用数据跟踪手泵的使用情况,并促进肯尼亚农村地区的手泵维护系统。我们的动机是开发一种具有成本效益和可扩展的基础设施,以监测一些地区的浅层含水层,在这些地区,手泵已经是水基础设施的一部分,但传统的地下水监测数据来源可能有限或根本不存在。这些数据是通过连接在肯尼亚研究地点的9个手泵手柄上的加速度计传感器产生的,这些传感器已经安装了一年。这些来自手动泵的时间序列数据使用机器学习方法单独建模,以跟踪水位相对于上升总管底部的变化。研究结果表明,利用机器学习方法对手泵振动数据进行建模,可以从社区手泵的“意外基础设施”中提供有用的含水层监测信息。该技术旨在补充现有的水文地质建模,我们未来的主要目标之一是将这些机器学习输出与水文地质信息相结合,为浅层含水层监测开发更精细、更强大的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology X
Journal of Hydrology X Environmental Science-Water Science and Technology
CiteScore
7.00
自引率
2.50%
发文量
20
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信