On the Homeomorphism and Homotopy Type of Complexes of Multichains

Pub Date : 2022-12-11 DOI:10.1007/s00026-022-00626-y
Shaheen Nazir, Volkmar Welker
{"title":"On the Homeomorphism and Homotopy Type of Complexes of Multichains","authors":"Shaheen Nazir,&nbsp;Volkmar Welker","doi":"10.1007/s00026-022-00626-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we define and study for a finite partially ordered set <i>P</i> a class of simplicial complexes on the set <span>\\(P_r\\)</span> of <i>r</i>-element multichains of <i>P</i>. The simplicial complexes depend on a strictly monotone function from [<i>r</i>] to [2<i>r</i>]. We show that there are exactly <span>\\(2^r\\)</span> such functions which yield subdivisions of the order complex of <i>P</i>, of which <span>\\(2^{r-1}\\)</span> are pairwise different. Within this class are, for example, the order complexes of the intervals in <i>P</i>, the zig-zag poset of <i>P</i>, and the <span>\\(r{\\hbox {th}}\\)</span> edgewise subdivision of the order complex of <i>P</i>. We also exhibit a large subclass for which our simplicial complexes are order complexes and homotopy equivalent to the order complex of <i>P</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00626-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we define and study for a finite partially ordered set P a class of simplicial complexes on the set \(P_r\) of r-element multichains of P. The simplicial complexes depend on a strictly monotone function from [r] to [2r]. We show that there are exactly \(2^r\) such functions which yield subdivisions of the order complex of P, of which \(2^{r-1}\) are pairwise different. Within this class are, for example, the order complexes of the intervals in P, the zig-zag poset of P, and the \(r{\hbox {th}}\) edgewise subdivision of the order complex of P. We also exhibit a large subclass for which our simplicial complexes are order complexes and homotopy equivalent to the order complex of P.

Abstract Image

分享
查看原文
关于多链配合物的同胚性和同伦型
本文对有限偏序集P定义和研究了P的r元多链集(P_r)上的一类单纯复形。该单纯复形依赖于从[r]到[2r]的严格单调函数。我们证明了正存在\(2^r)这样的函数,它们产生P的阶复形的细分,其中\(2^{r-1}\)是成对不同的。例如,在这一类中,有P中区间的阶复形,P的Z字形偏序集,以及P的阶复型的\(r{\hbox{th}})edgewise细分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信