Computing Heights via Limits of Hodge Structures

Pub Date : 2022-07-29 DOI:10.1080/10586458.2023.2188318
S. Bloch, R. Jong, Emre Can Sertoz
{"title":"Computing Heights via Limits of Hodge Structures","authors":"S. Bloch, R. Jong, Emre Can Sertoz","doi":"10.1080/10586458.2023.2188318","DOIUrl":null,"url":null,"abstract":"We consider the problem of explicitly computing Beilinson--Bloch heights of homologically trivial cycles on varieties defined over number fields. Recent results have established a congruence, up to the rational span of logarithms of primes, between the height of certain limit mixed Hodge structures and certain Beilinson--Bloch heights obtained from odd-dimensional hypersurfaces with a node. This congruence suggests a new method to compute Beilinson--Bloch heights. Here we explain how to compute the relevant limit mixed Hodge structures in practice, then apply our computational method to a nodal quartic curve and a nodal cubic threefold. In both cases, we explain the nature of the primes occurring in the congruence.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2023.2188318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of explicitly computing Beilinson--Bloch heights of homologically trivial cycles on varieties defined over number fields. Recent results have established a congruence, up to the rational span of logarithms of primes, between the height of certain limit mixed Hodge structures and certain Beilinson--Bloch heights obtained from odd-dimensional hypersurfaces with a node. This congruence suggests a new method to compute Beilinson--Bloch heights. Here we explain how to compute the relevant limit mixed Hodge structures in practice, then apply our computational method to a nodal quartic curve and a nodal cubic threefold. In both cases, we explain the nature of the primes occurring in the congruence.
分享
查看原文
通过霍奇结构的极限计算高度
研究了在数域上定义的变异上同调平凡环的显式计算Beilinson—Bloch高度的问题。最近的结果已经建立了某种极限混合Hodge结构的高度与从带节点的奇维超曲面上得到的某些Beilinson—Bloch高度之间的同余,直到质数对数的有理张成为止。这个同余式提出了一种计算Beilinson- Bloch高度的新方法。本文解释了如何在实践中计算相关的极限混合Hodge结构,然后将我们的计算方法应用于节点四次曲线和节点三次曲线。在这两种情况下,我们都解释了在同余中出现的质数的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信