Usefulness of the CPTU method in evaluating shear modulus G0 changes in the subsoil

IF 0.7 Q4 MECHANICS
Z. Młynarek, J. Wierzbicki, T. Lunne
{"title":"Usefulness of the CPTU method in evaluating shear modulus G0 changes in the subsoil","authors":"Z. Młynarek, J. Wierzbicki, T. Lunne","doi":"10.2478/sgem-2021-0008","DOIUrl":null,"url":null,"abstract":"Abstract This article contains the analysis of the correlation between the cone resistance qc from CPTU tests and shear modulus G0 determined from seismic tests SDMT and SCPTU. The analysis was performed for sands located in Poland, characterised by differential grain size distribution and origin. The significant impact of the independent variables; grain size, preconsolidation stress σ’p, geostatic vertical stress σ’v0 and relative density index on the dependencies analysed, were examined in three stages. Firstly, a general relationship between the cone resistance and shear modulus G0 was established; in the second stage, an analysis was carried out in selected groups of subsoil; and in the third stage, the influence of other independent variables was taken into account. In each stage, the functional form of the dependency was determined, and their statistical significance was assessed throughout coefficient of determination R2. For more variables, multivariable regression analysis was applied for assessment. Conducted analysis showed that the overall view of the relation between the cone resistance qc and shear modulus G0 has low evaluation of the statistical significance. This fact is consistent with the theoretical assessment of this relationship. To obtain a satisfactory assessment of this dependency, it is necessary to construct empirical equations for individual groups of soil, taking into account other independent variables; preconsolidation stress σ’p, vertical stress σ’vo and relative density index. This approach allows to assess the local correlation relationship, which is very useful during the geological project.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2021-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This article contains the analysis of the correlation between the cone resistance qc from CPTU tests and shear modulus G0 determined from seismic tests SDMT and SCPTU. The analysis was performed for sands located in Poland, characterised by differential grain size distribution and origin. The significant impact of the independent variables; grain size, preconsolidation stress σ’p, geostatic vertical stress σ’v0 and relative density index on the dependencies analysed, were examined in three stages. Firstly, a general relationship between the cone resistance and shear modulus G0 was established; in the second stage, an analysis was carried out in selected groups of subsoil; and in the third stage, the influence of other independent variables was taken into account. In each stage, the functional form of the dependency was determined, and their statistical significance was assessed throughout coefficient of determination R2. For more variables, multivariable regression analysis was applied for assessment. Conducted analysis showed that the overall view of the relation between the cone resistance qc and shear modulus G0 has low evaluation of the statistical significance. This fact is consistent with the theoretical assessment of this relationship. To obtain a satisfactory assessment of this dependency, it is necessary to construct empirical equations for individual groups of soil, taking into account other independent variables; preconsolidation stress σ’p, vertical stress σ’vo and relative density index. This approach allows to assess the local correlation relationship, which is very useful during the geological project.
CPTU法评价地基剪切模量G0变化的有效性
摘要本文分析了CPTU试验的锥体阻力qc与地震试验SDMT和SCPTU测定的剪切模量G0的相关性。分析是对位于波兰的砂进行的,其特点是不同的粒度分布和来源。自变量的显著影响;对粒径、预固结应力σ ' p、静力垂直应力σ ' v0和相对密度指数进行了三个阶段的相关性分析。首先,建立了锥体阻力与剪切模量G0的一般关系;在第二阶段,对选定的底土组进行了分析;在第三阶段,考虑其他自变量的影响。在每个阶段,确定依赖关系的函数形式,并通过决定系数R2评估其统计学显著性。对于较多的变量,采用多变量回归分析进行评价。通过分析发现,整体观点认为锥体阻力qc与剪切模量G0之间的关系具有较低的统计意义。这一事实与对这种关系的理论评价是一致的。为了获得对这种依赖性的满意评估,有必要为个别土壤组构建经验方程,并考虑到其他自变量;预固结应力σ ' p,垂直应力σ ' vo和相对密度指数。这种方法可以评估局部相关关系,这在地质工程中是非常有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
20
审稿时长
16 weeks
期刊介绍: An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信