A partial inverse problem for non-self-adjoint Sturm–Liouville operators with a constant delay

IF 0.9 4区 数学 Q2 MATHEMATICS
Yu Ping Wang, B. Keskin, Chung‐Tsun Shieh
{"title":"A partial inverse problem for non-self-adjoint Sturm–Liouville operators with a constant delay","authors":"Yu Ping Wang, B. Keskin, Chung‐Tsun Shieh","doi":"10.1515/jiip-2020-0058","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study a partial inverse spectral problem for non-self-adjoint Sturm–Liouville operators with a constant delay and show that subspectra of two boundary value problems with one common boundary condition are sufficient to determine the complex potential. We developed the Horváth’s method in [M. Horváth, On the inverse spectral theory of Schrödinger and Dirac operators, Trans. Amer. Math. Soc. 353 2001, 10, 4155–4171] for the self-adjoint Sturm–Liouville operator without delay into the non-self-adjoint Sturm–Liouville differential operator with a constant delay.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"31 1","pages":"479 - 486"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2020-0058","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In this paper we study a partial inverse spectral problem for non-self-adjoint Sturm–Liouville operators with a constant delay and show that subspectra of two boundary value problems with one common boundary condition are sufficient to determine the complex potential. We developed the Horváth’s method in [M. Horváth, On the inverse spectral theory of Schrödinger and Dirac operators, Trans. Amer. Math. Soc. 353 2001, 10, 4155–4171] for the self-adjoint Sturm–Liouville operator without delay into the non-self-adjoint Sturm–Liouville differential operator with a constant delay.
一类具有常延迟的非自伴Sturm-Liouville算子的部分逆问题
摘要研究了一类具有常延迟的非自伴随Sturm-Liouville算子的偏逆谱问题,证明了具有一个共同边界条件的两个边值问题的子谱足以确定复势。我们在[M]开发了Horváth的方法。Horváth,关于Schrödinger和狄拉克算子的逆谱理论,译。阿米尔。数学。[j] .中文信息学报,2001,10(1):1 - 2 .无延迟自伴Sturm-Liouville算子转化为具有常延迟的非自伴Sturm-Liouville微分算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信