{"title":"A partial inverse problem for non-self-adjoint Sturm–Liouville operators with a constant delay","authors":"Yu Ping Wang, B. Keskin, Chung‐Tsun Shieh","doi":"10.1515/jiip-2020-0058","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study a partial inverse spectral problem for non-self-adjoint Sturm–Liouville operators with a constant delay and show that subspectra of two boundary value problems with one common boundary condition are sufficient to determine the complex potential. We developed the Horváth’s method in [M. Horváth, On the inverse spectral theory of Schrödinger and Dirac operators, Trans. Amer. Math. Soc. 353 2001, 10, 4155–4171] for the self-adjoint Sturm–Liouville operator without delay into the non-self-adjoint Sturm–Liouville differential operator with a constant delay.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"31 1","pages":"479 - 486"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2020-0058","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract In this paper we study a partial inverse spectral problem for non-self-adjoint Sturm–Liouville operators with a constant delay and show that subspectra of two boundary value problems with one common boundary condition are sufficient to determine the complex potential. We developed the Horváth’s method in [M. Horváth, On the inverse spectral theory of Schrödinger and Dirac operators, Trans. Amer. Math. Soc. 353 2001, 10, 4155–4171] for the self-adjoint Sturm–Liouville operator without delay into the non-self-adjoint Sturm–Liouville differential operator with a constant delay.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography