{"title":"Branching Brownian motion in a periodic environment and uniqueness of pulsating traveling waves","authors":"Yanxia Ren, R. Song, Fan Yang","doi":"10.1017/apr.2022.32","DOIUrl":null,"url":null,"abstract":"Abstract Using one-dimensional branching Brownian motion in a periodic environment, we give probabilistic proofs of the asymptotics and uniqueness of pulsating traveling waves of the Fisher–Kolmogorov–Petrovskii–Piskounov (F-KPP) equation in a periodic environment. This paper is a sequel to ‘Branching Brownian motion in a periodic environment and existence of pulsating travelling waves’ (Ren et al., 2022), in which we proved the existence of the pulsating traveling waves in the supercritical and critical cases, using the limits of the additive and derivative martingales of branching Brownian motion in a periodic environment.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Using one-dimensional branching Brownian motion in a periodic environment, we give probabilistic proofs of the asymptotics and uniqueness of pulsating traveling waves of the Fisher–Kolmogorov–Petrovskii–Piskounov (F-KPP) equation in a periodic environment. This paper is a sequel to ‘Branching Brownian motion in a periodic environment and existence of pulsating travelling waves’ (Ren et al., 2022), in which we proved the existence of the pulsating traveling waves in the supercritical and critical cases, using the limits of the additive and derivative martingales of branching Brownian motion in a periodic environment.
摘要利用周期环境中的一维分支布朗运动,给出了周期环境中Fisher–Kolmogorov–Petrovskii–Piskounov(F-KPP)方程脉动行波的渐近性和唯一性的概率证明。本文是“周期环境中的分支布朗运动和脉动行波的存在”(Ren et al.,2022)的续篇,其中我们利用周期环境中分支布朗运动的加性和导数鞅的极限,证明了在超临界和临界情况下脉动行波的存在。