Formation of singularities for a family of 1D quasilinear wave equations

IF 1.2 2区 数学 Q1 MATHEMATICS
Yuusuke Sugiyama
{"title":"Formation of singularities for a family of 1D quasilinear wave equations","authors":"Yuusuke Sugiyama","doi":"10.1512/iumj.2022.71.9196","DOIUrl":null,"url":null,"abstract":"We consider the blow-up of solutions to the following parameterized nonlinear wave equation: utt = c(u)uxx + λc(u)c(u)(ux) with the real parameter λ. In previous works, it was reported that there exist finite time blow-up solutions with λ = 1 and 2. However, the construction of a blow-up solution depends on the symmetric structure of the equation (e.g., the energy conservation law). In the present paper, we extend the blow-up result with λ = 1 to the case with λ ∈ (0, 1] by using a new L2/λ estimate. Moreover, some properties for the blow-up solution including the Hölder continuity are also discussed.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2022.71.9196","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the blow-up of solutions to the following parameterized nonlinear wave equation: utt = c(u)uxx + λc(u)c(u)(ux) with the real parameter λ. In previous works, it was reported that there exist finite time blow-up solutions with λ = 1 and 2. However, the construction of a blow-up solution depends on the symmetric structure of the equation (e.g., the energy conservation law). In the present paper, we extend the blow-up result with λ = 1 to the case with λ ∈ (0, 1] by using a new L2/λ estimate. Moreover, some properties for the blow-up solution including the Hölder continuity are also discussed.
一类一维拟线性波动方程组奇点的形成
我们考虑以下参数化非线性波动方程解的爆破:utt=c(u)ux+λ。在以前的工作中,据报道存在λ=1和2的有限时间爆破解。然而,爆破解的构造取决于方程的对称结构(例如,能量守恒定律)。本文利用一个新的L2/λ估计,将λ=1的blow-up结果推广到λ∈(0,1])的情况。此外,还讨论了包括Hölder连续性在内的blow-up解的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信