Order Allocation and Purchasing Transportation Planning in the Garment Supply Chain: A Goal-Flexible Planning Approach

IF 0.6 Q4 ENGINEERING, INDUSTRIAL
R. Setiawan
{"title":"Order Allocation and Purchasing Transportation Planning in the Garment Supply Chain: A Goal-Flexible Planning Approach","authors":"R. Setiawan","doi":"10.7232/iems.2021.20.2.223","DOIUrl":null,"url":null,"abstract":"The garment supply chain is one of the most common supply chains in the world. In this supply chain, quality and cost are the most important factors that are strongly related to the selection of suppliers and the allocation of orders to them. Accordingly, the purpose of this paper is to integrate decisions for supplier selection, order allocation, and multi-source, multi-mode, multi-product shipping plans with consideration of discounts under uncertainty. For this purpose, a multi-objective mixed-integer mathematical model is presented, including the objectives of minimizing costs and products with delays and maximizing the total purchase value. In this mathematical model, the policy of purchasing materials and determining the number and type of transport equipment are specified. To solve this mathematical model, a goal-flexible programming approach with a utility function is presented. In the solution algorithm, a new possibility-flexible programming method has been developed to deal with the uncertainties in the model, which is based on the expected value method and chance constraint. Finally, using a numerical problem, the establishment of the above model in the garment supply chain is investigated. As indicated by the outcomes, the proposed model was touchy to certain boundaries, including blended leaders’ mentality, a boundary identified with fluffy imperatives, and the degree of certainty characterized by the chief for not exactly equivalent limitations.","PeriodicalId":45245,"journal":{"name":"Industrial Engineering and Management Systems","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Engineering and Management Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7232/iems.2021.20.2.223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

The garment supply chain is one of the most common supply chains in the world. In this supply chain, quality and cost are the most important factors that are strongly related to the selection of suppliers and the allocation of orders to them. Accordingly, the purpose of this paper is to integrate decisions for supplier selection, order allocation, and multi-source, multi-mode, multi-product shipping plans with consideration of discounts under uncertainty. For this purpose, a multi-objective mixed-integer mathematical model is presented, including the objectives of minimizing costs and products with delays and maximizing the total purchase value. In this mathematical model, the policy of purchasing materials and determining the number and type of transport equipment are specified. To solve this mathematical model, a goal-flexible programming approach with a utility function is presented. In the solution algorithm, a new possibility-flexible programming method has been developed to deal with the uncertainties in the model, which is based on the expected value method and chance constraint. Finally, using a numerical problem, the establishment of the above model in the garment supply chain is investigated. As indicated by the outcomes, the proposed model was touchy to certain boundaries, including blended leaders’ mentality, a boundary identified with fluffy imperatives, and the degree of certainty characterized by the chief for not exactly equivalent limitations.
服装供应链订单分配与采购运输规划:目标柔性规划方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
28.60%
发文量
45
期刊介绍: Industrial Engineering and Management Systems (IEMS) covers all areas of industrial engineering and management sciences including but not limited to, applied statistics & data mining, business & information systems, computational intelligence & optimization, environment & energy, ergonomics & human factors, logistics & transportation, manufacturing systems, planning & scheduling, quality & reliability, supply chain management & inventory systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信