{"title":"Noise shielding of a deflected flap for comparing numerical predictions with flyover experiments","authors":"M. Mößner, J. Delfs, M. Pott-Pollenske","doi":"10.1177/1475472X221079560","DOIUrl":null,"url":null,"abstract":"Comparing acoustic simulations against experimental data is an essential step in order to prove the correctness of numerical tools. This can be done with wind tunnel experiments where the environmental conditions can be adjusted very accurately. Ultimately, the tools must be capable of predicting real-word scenarios like aircraft flyovers. However, obtaining precise data from flyover experiments is challenging and often important input data is missing. The current paper shows, that by extracting the shielding effect of a small detail, a deflecting flap of an aircraft with rear-mounted engines, it is possible to reproduce flyover measurements with a boundary element method, even when only little engine information is known. The boundary element method can only take a constant mean flow into account, but by additionally evaluating results of a volume-resolved discontinuous Galerkin method more insights into the expected effects of a realistic mean flow is given.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"21 1","pages":"57 - 73"},"PeriodicalIF":1.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X221079560","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Comparing acoustic simulations against experimental data is an essential step in order to prove the correctness of numerical tools. This can be done with wind tunnel experiments where the environmental conditions can be adjusted very accurately. Ultimately, the tools must be capable of predicting real-word scenarios like aircraft flyovers. However, obtaining precise data from flyover experiments is challenging and often important input data is missing. The current paper shows, that by extracting the shielding effect of a small detail, a deflecting flap of an aircraft with rear-mounted engines, it is possible to reproduce flyover measurements with a boundary element method, even when only little engine information is known. The boundary element method can only take a constant mean flow into account, but by additionally evaluating results of a volume-resolved discontinuous Galerkin method more insights into the expected effects of a realistic mean flow is given.
期刊介绍:
International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published.
Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.