A Collaborative Learning-based Urban Low-light Small-target Face Image Enhancement Method

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zheng Wu, Kehua Guo, Liwei Wang, Min Hu, Sheng Ren
{"title":"A Collaborative Learning-based Urban Low-light Small-target Face Image Enhancement Method","authors":"Zheng Wu, Kehua Guo, Liwei Wang, Min Hu, Sheng Ren","doi":"10.1145/3616013","DOIUrl":null,"url":null,"abstract":"Face recognition is an essential technology in intelligent transportation and security within smart cities. Nevertheless, face images taken in nighttime urban environments often suffer from low brightness, small sizes, and low resolution, which pose significant challenges for accurate face feature recognition. To address this issue, we propose the Low-light Small-target Face Enhancement (LSFE) method, a collaborative learning-based image brightness enhancement approach specifically designed for small-target faces in low-light environments. LSFE employs a multilevel feature stratification module to acquire detailed face image features at different levels, revealing hidden facial image information within the dark. In addition, we design a network combining collaborative learning and self-attention mechanisms, which effectively captures long-distance pixel dependencies in low-brightness face images and enhances their brightness in a stepwise manner. The enhanced feature maps are then fused through a branch fusion module. Experimental results demonstrate that LSFE can more effectively enhance the luminance of small-target face images in low-light scenes while retaining more visual information, compared to other existing methods.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3616013","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Face recognition is an essential technology in intelligent transportation and security within smart cities. Nevertheless, face images taken in nighttime urban environments often suffer from low brightness, small sizes, and low resolution, which pose significant challenges for accurate face feature recognition. To address this issue, we propose the Low-light Small-target Face Enhancement (LSFE) method, a collaborative learning-based image brightness enhancement approach specifically designed for small-target faces in low-light environments. LSFE employs a multilevel feature stratification module to acquire detailed face image features at different levels, revealing hidden facial image information within the dark. In addition, we design a network combining collaborative learning and self-attention mechanisms, which effectively captures long-distance pixel dependencies in low-brightness face images and enhances their brightness in a stepwise manner. The enhanced feature maps are then fused through a branch fusion module. Experimental results demonstrate that LSFE can more effectively enhance the luminance of small-target face images in low-light scenes while retaining more visual information, compared to other existing methods.
基于协同学习的城市微光小目标人脸图像增强方法
人脸识别是智能交通和智慧城市安全的重要技术。然而,在夜间城市环境中拍摄的人脸图像往往存在亮度低、尺寸小、分辨率低等问题,这对人脸特征的准确识别构成了重大挑战。为了解决这个问题,我们提出了低光小目标人脸增强(LSFE)方法,这是一种专门为低光环境下的小目标人脸设计的基于协作学习的图像亮度增强方法。LSFE采用多层次特征分层模块,获取不同层次的详细人脸图像特征,揭示黑暗中隐藏的人脸图像信息。此外,我们设计了一个结合协作学习和自注意机制的网络,有效捕获低亮度人脸图像的远距离像素依赖,并逐步增强其亮度。然后通过分支融合模块融合增强的特征图。实验结果表明,与现有方法相比,LSFE可以更有效地增强低光场景下小目标人脸图像的亮度,同时保留更多的视觉信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Sensor Networks
ACM Transactions on Sensor Networks 工程技术-电信学
CiteScore
5.90
自引率
7.30%
发文量
131
审稿时长
6 months
期刊介绍: ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信