On the global operator and Fueter mapping theorem for slice polyanalytic functions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D. Alpay, K. Diki, I. Sabadini
{"title":"On the global operator and Fueter mapping theorem for slice polyanalytic functions","authors":"D. Alpay, K. Diki, I. Sabadini","doi":"10.1142/S0219530520500189","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that slice polyanalytic functions on quaternions can be considered as solutions of a power of some special global operator with nonconstant coefficients as it happens in the case of slice hyperholomorphic functions. We investigate also an extension version of the Fueter mapping theorem in this polyanalytic setting. In particular, we show that under axially symmetric conditions it is always possible to construct Fueter regular and poly-Fueter regular functions through slice polyanalytic ones using what we call the poly-Fueter mappings. We study also some integral representations of these results on the quaternionic unit ball.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219530520500189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we prove that slice polyanalytic functions on quaternions can be considered as solutions of a power of some special global operator with nonconstant coefficients as it happens in the case of slice hyperholomorphic functions. We investigate also an extension version of the Fueter mapping theorem in this polyanalytic setting. In particular, we show that under axially symmetric conditions it is always possible to construct Fueter regular and poly-Fueter regular functions through slice polyanalytic ones using what we call the poly-Fueter mappings. We study also some integral representations of these results on the quaternionic unit ball.
切片多解析函数的全局算子和Fueter映射定理
本文证明了四元数上的片多解析函数可以看作是非常系数的特殊全局算子的幂的解,就像片超全纯函数一样。我们也研究了在这种多解析环境下的Fueter映射定理的一个扩展版本。特别地,我们证明了在轴对称条件下,使用我们称之为聚-富特映射的薄片多解析函数总是可以构造富特正则函数和聚-富特正则函数。我们还研究了这些结果在四元数单位球上的一些积分表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信