Statistical Inference for Gompertz Distribution Using the Adaptive-General Progressive Type-II Censored Samples

Q3 Business, Management and Accounting
M. H. Abu-Moussa, M. El-din, M. A. Mosilhy
{"title":"Statistical Inference for Gompertz Distribution Using the Adaptive-General Progressive Type-II Censored Samples","authors":"M. H. Abu-Moussa, M. El-din, M. A. Mosilhy","doi":"10.1080/01966324.2020.1835590","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we combine the adaptive progressive Type-II censoring model with the general progressive model, to obtain the estimates for the parameters of Gompertz distribution, and the Bayesian prediction intervals. Estimation is executed using the maximum likelihood method (MLE) and the Bayesian method. Bayesian estimates are constructed depending on four types of loss functions. The credible intervals and the asymptotic confidence intervals are determined for the parameters of Gompertz distribution based on the Bayesian estimates and the MLEs, respectively. Finally, a real data example and the simulation study are discussed to compare the proposed methods.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"40 1","pages":"189 - 211"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2020.1835590","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2020.1835590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract In this article, we combine the adaptive progressive Type-II censoring model with the general progressive model, to obtain the estimates for the parameters of Gompertz distribution, and the Bayesian prediction intervals. Estimation is executed using the maximum likelihood method (MLE) and the Bayesian method. Bayesian estimates are constructed depending on four types of loss functions. The credible intervals and the asymptotic confidence intervals are determined for the parameters of Gompertz distribution based on the Bayesian estimates and the MLEs, respectively. Finally, a real data example and the simulation study are discussed to compare the proposed methods.
使用自适应一般渐进型ii截尾样本的Gompertz分布的统计推断
本文将自适应渐进式ii型滤波模型与一般渐进式模型相结合,得到了Gompertz分布参数的估计和贝叶斯预测区间。估计使用最大似然法(MLE)和贝叶斯方法执行。贝叶斯估计是根据四种类型的损失函数构造的。分别基于贝叶斯估计和最大似然估计确定了Gompertz分布参数的可信区间和渐近置信区间。最后,通过实际数据算例和仿真研究对所提方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信