Reactive compatibilization of polypropylene grafted with maleic anhydride and styrene, prepared by a mechanochemical method, for a blend system of biodegradable poly(propylene carbonate)/polypropylene spunbond nonwoven slice
Zheng Tian, Yilu Zhang, N. Xu, Lisha Pan, Yuhong Feng
{"title":"Reactive compatibilization of polypropylene grafted with maleic anhydride and styrene, prepared by a mechanochemical method, for a blend system of biodegradable poly(propylene carbonate)/polypropylene spunbond nonwoven slice","authors":"Zheng Tian, Yilu Zhang, N. Xu, Lisha Pan, Yuhong Feng","doi":"10.1515/ipp-2023-4345","DOIUrl":null,"url":null,"abstract":"Abstract Poly(propylene carbonate) (PPC)/polypropylene (PP) spunbond nonwoven slice has gained more attention, owing to its excellent properties, such as biodegradability, flexibility, biocompatibility, and CO2 utilization. However, the applications of this green material are limited due to the poor thermodynamic incompatibility between PPC and PP. In this paper, PP grafted with maleic anhydride (MAH) and styrene (St) (PP-g-(MAH-co-St)), prepared by a mechanochemical method and having a grafting percentage GMAH = 1.40 %, was used as a compatibilizer to prepare a biodegradable PPC/compatibilizer/PP composite-spunbond nonwoven slice by melt-blending. The effects of compatibilizer content on the tensile strength, elongation at break, melt flow rate, thermal properties, and micro-morphology of PPC/PP-g-(MAH-co-St)/PP were systematically studied. Furthermore, the mechanism of compatibilization of PP-g-(MAH-co-St) in the PPC/PP spunbond nonwoven composite slice is discussed. The results indicated that this green PP-g-(MAH-co-St) exhibited a clear reactive compatibilization effect. Therefore, it can be considered as a good compatibilizer for the biodegradable PPC/PP spunbond nonwoven slice.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":"38 1","pages":"395 - 403"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4345","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Poly(propylene carbonate) (PPC)/polypropylene (PP) spunbond nonwoven slice has gained more attention, owing to its excellent properties, such as biodegradability, flexibility, biocompatibility, and CO2 utilization. However, the applications of this green material are limited due to the poor thermodynamic incompatibility between PPC and PP. In this paper, PP grafted with maleic anhydride (MAH) and styrene (St) (PP-g-(MAH-co-St)), prepared by a mechanochemical method and having a grafting percentage GMAH = 1.40 %, was used as a compatibilizer to prepare a biodegradable PPC/compatibilizer/PP composite-spunbond nonwoven slice by melt-blending. The effects of compatibilizer content on the tensile strength, elongation at break, melt flow rate, thermal properties, and micro-morphology of PPC/PP-g-(MAH-co-St)/PP were systematically studied. Furthermore, the mechanism of compatibilization of PP-g-(MAH-co-St) in the PPC/PP spunbond nonwoven composite slice is discussed. The results indicated that this green PP-g-(MAH-co-St) exhibited a clear reactive compatibilization effect. Therefore, it can be considered as a good compatibilizer for the biodegradable PPC/PP spunbond nonwoven slice.
期刊介绍:
International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.