Optimal choice of supervised techniques for MR image classification

B. Aruna Devi, M. Pallikonda Rajasekaran
{"title":"Optimal choice of supervised techniques for MR image classification","authors":"B. Aruna Devi, M. Pallikonda Rajasekaran","doi":"10.17993/3ctecno.2020.specialissue4.313-327","DOIUrl":null,"url":null,"abstract":"Magnetic Resonance Imaging (MRI) is a modern, robust method that uses in the detection of various medical problems. In this research work, a trial is used to attempt for the detection of tumour in pancreas MR images. An automated classifier is used for detection of tumour in MR images and avoids the drawbacks of MRI. This automated classifiers can detect automatically, either the MR image is affected or not affected. Features are extracted from MR images using second order statistics approach and are classified by two techniques Support Vector Machine (SVM) and Extreme Learning Machine (ELM). SVM approach has high classification accuracy (96%) which is higher than ELM, while ELM performs faster compared to SVM.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctecno.2020.specialissue4.313-327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Magnetic Resonance Imaging (MRI) is a modern, robust method that uses in the detection of various medical problems. In this research work, a trial is used to attempt for the detection of tumour in pancreas MR images. An automated classifier is used for detection of tumour in MR images and avoids the drawbacks of MRI. This automated classifiers can detect automatically, either the MR image is affected or not affected. Features are extracted from MR images using second order statistics approach and are classified by two techniques Support Vector Machine (SVM) and Extreme Learning Machine (ELM). SVM approach has high classification accuracy (96%) which is higher than ELM, while ELM performs faster compared to SVM.
分享
查看原文
磁共振图像分类中监督技术的最优选择
磁共振成像(MRI)是一种现代的、强大的方法,用于检测各种医疗问题。在这项研究工作中,一个试验是用来尝试检测肿瘤胰腺磁共振图像。自动分类器用于MR图像中的肿瘤检测,避免了MRI的缺点。该自动分类器可以自动检测MR图像是否受到影响。采用二阶统计方法提取磁共振图像的特征,并采用支持向量机(SVM)和极限学习机(ELM)两种技术进行分类。SVM方法具有较高的分类准确率(96%),高于ELM方法,而ELM方法的分类速度要快于SVM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信