{"title":"A Genuinely Two-Dimensional HLL-Type Approximate Riemann Solver for Hypo-Elastic Plastic Flow","authors":"Zhiqiang Zeng, Chengliang Feng, Xiaotao Zhang, Shengtao Zhang null, Tiegang Liu","doi":"10.4208/cicp.oa-2022-0314","DOIUrl":null,"url":null,"abstract":". In this work, a genuinely two-dimensional HLL-type approximate Riemann solver is proposed for hypo-elastic plastic flow. To consider the effects of wave interaction from both the x - and y -directions, a corresponding 2D elastic-plastic approximate solver is constructed with elastic-plastic transition embedded. The resultant numerical flux combines one-dimensional numerical flux in the central region of the cell edge and two-dimensional flux in the cell vertex region. The stress is updated separately by using the velocity obtained with the above approximate Riemann solver. Several numerical tests, including genuinely two-dimensional examples, are presented to test the performances of the proposed method. The numerical results demonstrate the credibility of the present 2D approximate Riemann solver.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2022-0314","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
. In this work, a genuinely two-dimensional HLL-type approximate Riemann solver is proposed for hypo-elastic plastic flow. To consider the effects of wave interaction from both the x - and y -directions, a corresponding 2D elastic-plastic approximate solver is constructed with elastic-plastic transition embedded. The resultant numerical flux combines one-dimensional numerical flux in the central region of the cell edge and two-dimensional flux in the cell vertex region. The stress is updated separately by using the velocity obtained with the above approximate Riemann solver. Several numerical tests, including genuinely two-dimensional examples, are presented to test the performances of the proposed method. The numerical results demonstrate the credibility of the present 2D approximate Riemann solver.
期刊介绍:
Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.