The Du Bois complex of a hypersurface and the minimal exponent

IF 2.3 1区 数学 Q1 MATHEMATICS
M. Mustaţă, S. Olano, M. Popa, J. Witaszek
{"title":"The Du Bois complex of a hypersurface and the minimal exponent","authors":"M. Mustaţă, S. Olano, M. Popa, J. Witaszek","doi":"10.1215/00127094-2022-0074","DOIUrl":null,"url":null,"abstract":"We study the Du Bois complex $\\underline{\\Omega}_Z^\\bullet$ of a hypersurface $Z$ in a smooth complex algebraic variety in terms its minimal exponent $\\widetilde{\\alpha}(Z)$. The latter is an invariant of singularities, defined as the negative of the greatest root of the reduced Bernstein-Sato polynomial of $Z$, and refining the log canonical threshold. We show that if $\\widetilde{\\alpha}(Z)\\geq p+1$, then the canonical morphism $\\Omega_Z^p\\to \\underline{\\Omega}_Z^p$ is an isomorphism, where $\\underline{\\Omega}_Z^p$ is the $p$-th associated graded piece of the Du Bois complex with respect to the Hodge filtration. On the other hand, if $Z$ is singular and $\\widetilde{\\alpha}(Z)>p\\geq 2$, we obtain non-vanishing results for some of the higher cohomologies of $\\underline{\\Omega}_Z^{n-p}$.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0074","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

Abstract

We study the Du Bois complex $\underline{\Omega}_Z^\bullet$ of a hypersurface $Z$ in a smooth complex algebraic variety in terms its minimal exponent $\widetilde{\alpha}(Z)$. The latter is an invariant of singularities, defined as the negative of the greatest root of the reduced Bernstein-Sato polynomial of $Z$, and refining the log canonical threshold. We show that if $\widetilde{\alpha}(Z)\geq p+1$, then the canonical morphism $\Omega_Z^p\to \underline{\Omega}_Z^p$ is an isomorphism, where $\underline{\Omega}_Z^p$ is the $p$-th associated graded piece of the Du Bois complex with respect to the Hodge filtration. On the other hand, if $Z$ is singular and $\widetilde{\alpha}(Z)>p\geq 2$, we obtain non-vanishing results for some of the higher cohomologies of $\underline{\Omega}_Z^{n-p}$.
超曲面的Du-Bois复形与极小指数
我们研究了光滑复代数变体中超曲面$Z$的Du-Bois复形$\underline{\Omega}_Z^\bullet$,其最小指数为$\widetilde{\alpha}(Z)$。后者是奇点的不变量,定义为$Z$的简化Bernstein Sato多项式的最大根的负值,并改进了对数正则阈值。我们证明了如果$\widetilde{\alpha}(Z)\geqp+1$,则正则态射$\Omega_Z^p\to\underline{\Omega}_Z^p$是同构,其中$\underline{\Omega}_Z^p:是关于Hodge滤的Du Bois复形的第$p$个相关的分次片。另一方面,如果$Z$是奇异的并且$\widetilde{\alpha}(Z)>p\geq2$,我们得到了$\underline{\Omega}_Z^{n-p}$的一些较高上同调的非消失结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信