{"title":"The chondrichthyan fossil record of the Florida Platform (Eocene–Pleistocene)","authors":"Victor J. Perez","doi":"10.1017/pab.2021.47","DOIUrl":null,"url":null,"abstract":"Abstract.— As of September 2019, the Florida Museum of Natural History (FLMNH) had a curated collection of 117,449 chondrichthyan specimens from Florida, spanning the Eocene through the Pleistocene. Herein, I evaluate the completeness of the chondrichthyan fossil record from Florida based on the FLMNH collection, while analyzing patterns in taxonomic and ecomorphological diversity. At least 70 chondrichthyan taxa were recognized, representing 10 orders, 26 families, and 42 genera; of which, 20 taxa represent first occurrences from Florida. A sample of 107,698 specimens was organized into 12 time bins to analyze taxonomic and ecomorphological diversity, with an expectation that diversity patterns would correspond with global climate events (e.g., the Eocene–Oligocene transition and the middle Miocene climatic optimum). However, diversity patterns were obscured by pervasive sampling bias, attributable to variable collection methods, research prioritizations, and regional lithologic controls. Sampling is particularly poor for smaller specimens and older geologic units (e.g., the Paleogene). Despite incomplete sampling of the Florida chondrichthyan fossil record, there was an apparent turnover along the Atlantic and Gulf Coastal Plains from a lamniform- to carcharhiniform-dominated chondrichthyan fauna that occurred during the Eocene. This turnover corresponded with the extinction of many lamniform taxa with grasping-dominated dentition types (e.g., Brachycarcharias, Jaekelotodus, and Macrorhizodus). Selachian taxa that survived the late Eocene extinctions were predominantly represented by cutting-dominant dentition types. As cutting aids in the dismemberment of prey, this may reflect a macroevolutionary trend toward active predation and scavenging on larger prey, such as marine mammals, teleost fish, and other sharks.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"622 - 654"},"PeriodicalIF":2.6000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleobiology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2021.47","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract.— As of September 2019, the Florida Museum of Natural History (FLMNH) had a curated collection of 117,449 chondrichthyan specimens from Florida, spanning the Eocene through the Pleistocene. Herein, I evaluate the completeness of the chondrichthyan fossil record from Florida based on the FLMNH collection, while analyzing patterns in taxonomic and ecomorphological diversity. At least 70 chondrichthyan taxa were recognized, representing 10 orders, 26 families, and 42 genera; of which, 20 taxa represent first occurrences from Florida. A sample of 107,698 specimens was organized into 12 time bins to analyze taxonomic and ecomorphological diversity, with an expectation that diversity patterns would correspond with global climate events (e.g., the Eocene–Oligocene transition and the middle Miocene climatic optimum). However, diversity patterns were obscured by pervasive sampling bias, attributable to variable collection methods, research prioritizations, and regional lithologic controls. Sampling is particularly poor for smaller specimens and older geologic units (e.g., the Paleogene). Despite incomplete sampling of the Florida chondrichthyan fossil record, there was an apparent turnover along the Atlantic and Gulf Coastal Plains from a lamniform- to carcharhiniform-dominated chondrichthyan fauna that occurred during the Eocene. This turnover corresponded with the extinction of many lamniform taxa with grasping-dominated dentition types (e.g., Brachycarcharias, Jaekelotodus, and Macrorhizodus). Selachian taxa that survived the late Eocene extinctions were predominantly represented by cutting-dominant dentition types. As cutting aids in the dismemberment of prey, this may reflect a macroevolutionary trend toward active predation and scavenging on larger prey, such as marine mammals, teleost fish, and other sharks.
期刊介绍:
Paleobiology publishes original contributions of any length (but normally 10-50 manuscript pages) dealing with any aspect of biological paleontology. Emphasis is placed on biological or paleobiological processes and patterns, including macroevolution, extinction, diversification, speciation, functional morphology, bio-geography, phylogeny, paleoecology, molecular paleontology, taphonomy, natural selection and patterns of variation, abundance, and distribution in space and time, among others. Taxonomic papers are welcome if they have significant and broad applications. Papers concerning research on recent organisms and systems are appropriate if they are of particular interest to paleontologists. Papers should typically interest readers from more than one specialty. Proposals for symposium volumes should be discussed in advance with the editors.