{"title":"Effective input velocity and depth for deep and shallow sites for site response analysis","authors":"K. Bajaj, P. Anbazhagan","doi":"10.1080/17486025.2021.2023766","DOIUrl":null,"url":null,"abstract":"ABSTRACT Ground motion input layer depth and Vs are crucial parameters in computing representative surface amplification factor, especially for deep deposits where bedrock depth is unknown. For many soil sites, seismic bedrock depth is unknown and randomly assigning the input motion to any layer may result in bias response. The aim of this study is to understand the effect of input layer velocity or depth on surface response parameters. Further determining the appropriate layer for giving the input ground motion for reliable estimation of response parameters by carrying out detailed site-response analysis. For the analysis, surface and bedrock ground motion recordings from KiK-Net downhole are used. Total stress nonlinear site-response analysis has been carried out by varying the velocity and depth to input the ground motion recorded at the bottom most layer for deep and shallow profiles. Using linear mixed effect models on residuals calculated from recorded and predicted surface spectra, fixed bias and σ are calculated. Layer having Vs ≥ 1500 ( 150) m/s is suitable for capturing the surface amplification spectra for both deep and shallow deposits.","PeriodicalId":46470,"journal":{"name":"Geomechanics and Geoengineering-An International Journal","volume":"18 1","pages":"193 - 207"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geoengineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17486025.2021.2023766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Ground motion input layer depth and Vs are crucial parameters in computing representative surface amplification factor, especially for deep deposits where bedrock depth is unknown. For many soil sites, seismic bedrock depth is unknown and randomly assigning the input motion to any layer may result in bias response. The aim of this study is to understand the effect of input layer velocity or depth on surface response parameters. Further determining the appropriate layer for giving the input ground motion for reliable estimation of response parameters by carrying out detailed site-response analysis. For the analysis, surface and bedrock ground motion recordings from KiK-Net downhole are used. Total stress nonlinear site-response analysis has been carried out by varying the velocity and depth to input the ground motion recorded at the bottom most layer for deep and shallow profiles. Using linear mixed effect models on residuals calculated from recorded and predicted surface spectra, fixed bias and σ are calculated. Layer having Vs ≥ 1500 ( 150) m/s is suitable for capturing the surface amplification spectra for both deep and shallow deposits.
期刊介绍:
Geomechanics is concerned with the application of the principle of mechanics to earth-materials (namely geo-material). Geoengineering covers a wide range of engineering disciplines related to geo-materials, such as foundation engineering, slope engineering, tunnelling, rock engineering, engineering geology and geo-environmental engineering. Geomechanics and Geoengineering is a major publication channel for research in the areas of soil and rock mechanics, geotechnical and geological engineering, engineering geology, geo-environmental engineering and all geo-material related engineering and science disciplines. The Journal provides an international forum for the exchange of innovative ideas, especially between researchers in Asia and the rest of the world.