Topologizable and power bounded weighted composition operators on spaces of distributions

IF 0.7 4区 数学 Q2 MATHEMATICS
T. Kalmes
{"title":"Topologizable and power bounded weighted composition operators on spaces of distributions","authors":"T. Kalmes","doi":"10.4064/AP200211-11-5","DOIUrl":null,"url":null,"abstract":"We study topologizability and power boundedness of weigh\\-ted composition operators on (certain subspaces of) $\\mathscr{D}'(X)$ for an open subset $X$ of $\\mathbb{R}^d$. For the former property we derive a characterization in terms of the symbol and the weight of the weighted composition operator, while for the latter property necessary and sufficient conditions on the weight and the symbol are presented. Moreover, for an unweighted composition operator a characterization of power boundedness in terms of the symbol is derived for the special case of a bijective symbol.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/AP200211-11-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We study topologizability and power boundedness of weigh\-ted composition operators on (certain subspaces of) $\mathscr{D}'(X)$ for an open subset $X$ of $\mathbb{R}^d$. For the former property we derive a characterization in terms of the symbol and the weight of the weighted composition operator, while for the latter property necessary and sufficient conditions on the weight and the symbol are presented. Moreover, for an unweighted composition operator a characterization of power boundedness in terms of the symbol is derived for the special case of a bijective symbol.
分布空间上的拓扑可及幂有界加权复合算子
对于$\mathbb{R}^D$的开子集$X$,我们研究了$\mathscr{D}’(X)$的(某些子空间)上加权合成算子的拓扑可及性和幂有界性。对于前一个性质,我们得到了加权合成算子的符号和权重的刻画,而对于后一个性质给出了权重和符号的充要条件。此外,对于非加权复合算子,对于双射符号的特殊情况,导出了符号的幂有界性的刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信