{"title":"On the Ger\\v{s}gorin disks of distance matrices of graphs","authors":"M. Aouchiche, B. Rather, Issmail El Hallaoui","doi":"10.13001/ela.2021.6489","DOIUrl":null,"url":null,"abstract":"For a simple connected graph $G$, let $D(G)$, $Tr(G)$, $D^{L}(G)=Tr(G)-D(G)$, and $D^{Q}(G)=Tr(G)+D(G)$ be the distance matrix, the diagonal matrix of the vertex transmissions, the distance Laplacian matrix, and the distance signless Laplacian matrix of $G$, respectively. Atik and Panigrahi [2] suggested the study of the problem: Whether all eigenvalues, except the spectral radius, of $ D(G) $ and $ D^{Q}(G) $ lie in the smallest Ger\\v{s}gorin disk? In this paper, we provide a negative answer by constructing an infinite family of counterexamples.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2021.6489","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
For a simple connected graph $G$, let $D(G)$, $Tr(G)$, $D^{L}(G)=Tr(G)-D(G)$, and $D^{Q}(G)=Tr(G)+D(G)$ be the distance matrix, the diagonal matrix of the vertex transmissions, the distance Laplacian matrix, and the distance signless Laplacian matrix of $G$, respectively. Atik and Panigrahi [2] suggested the study of the problem: Whether all eigenvalues, except the spectral radius, of $ D(G) $ and $ D^{Q}(G) $ lie in the smallest Ger\v{s}gorin disk? In this paper, we provide a negative answer by constructing an infinite family of counterexamples.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.