Restriction of Eisenstein series and Stark–Heegner points

Pub Date : 2020-02-27 DOI:10.5802/jtnb.1182
Ming-Lun Hsieh, Shunsuke Yamana
{"title":"Restriction of Eisenstein series and Stark–Heegner points","authors":"Ming-Lun Hsieh, Shunsuke Yamana","doi":"10.5802/jtnb.1182","DOIUrl":null,"url":null,"abstract":"In a recent work of Darmon, Pozzi and Vonk, the authors consider a particular $p$-adic family of Hilbert Eisenstein series $E_k(1,\\brch)$ associated with an odd character $\\brch$ of the narrow ideal class group of a real quadratic field $F$ and compute the first derivative of a certain one-variable twisted triple product $p$-adic $L$-series attached to $E_k(1,\\brch)$ and an elliptic newform $f$ of weight $2$ on $\\Gamma_0(p)$. In this paper, we generalize their construction to include the cyclotomic variable and thus obtain a two-variable twisted triple product $p$-adic $L$-series. Moreover, when $f$ is associated with an elliptic curve $E$ over $\\Q$, we prove that the first derivative of this $p$-adic $L$-series along the weight direction is a product of the $p$-adic logarithm of a Stark-Heegner point of $E$ over $F$ introduced by Darmon and the cyclotomic $p$-adic $L$-function for $E$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a recent work of Darmon, Pozzi and Vonk, the authors consider a particular $p$-adic family of Hilbert Eisenstein series $E_k(1,\brch)$ associated with an odd character $\brch$ of the narrow ideal class group of a real quadratic field $F$ and compute the first derivative of a certain one-variable twisted triple product $p$-adic $L$-series attached to $E_k(1,\brch)$ and an elliptic newform $f$ of weight $2$ on $\Gamma_0(p)$. In this paper, we generalize their construction to include the cyclotomic variable and thus obtain a two-variable twisted triple product $p$-adic $L$-series. Moreover, when $f$ is associated with an elliptic curve $E$ over $\Q$, we prove that the first derivative of this $p$-adic $L$-series along the weight direction is a product of the $p$-adic logarithm of a Stark-Heegner point of $E$ over $F$ introduced by Darmon and the cyclotomic $p$-adic $L$-function for $E$.
分享
查看原文
爱森斯坦级数与Stark-Heegner点的限制
在Darmon、Pozzi和Vonk最近的一部作品中,考虑Hilbert-Eisenstein级数$E_k(1,\brch)$的一个特殊$p$adic族与实二次域$F$的窄理想子群的奇字符$\brch$有关,并计算了一个单变量扭三乘积$p$radic$L$-级数与$\Gamma_0(p)$上权重为$2$的椭圆新形式$F$的一阶导数。在本文中,我们将它们的构造推广到包括分圆变量,从而得到一个双变量扭曲三乘积$p$-dic$L$-级数。此外,当$f$与$\Q$上的椭圆曲线$E$相关联时,我们证明了该$p$-adic$L$-级数沿权重方向的一阶导数是Darmon引入的$E$上的Stark-Heegner点的$p$-dic对数和$E$的分圆$p$-adic$L$函数的乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信